BACKGROUND: The war in Ukraine has led to significant migration to neighboring countries, raising public health concerns. Notable tuberculosis (TB) incidence rates in Ukraine emphasize the immediate requirement to prioritize approaches that interrupt the spread and prevent new infections. METHODS: We conducted a prospective genomic surveillance study to assess migration's impact on TB epidemiology in the Czech Republic and Slovakia. Mycobacterium tuberculosis isolates from Ukrainian war refugees and migrants, collected from September 2021 to December 2022 were analyzed alongside 1574 isolates obtained from Ukraine, the Czech Republic, and Slovakia. RESULTS: Our study revealed alarming results, with historically the highest number of Ukrainian tuberculosis patients detected in the host countries. The increasing number of cases of multidrug-resistant TB, significantly linked with Beijing lineage 2.2.1 (p < 0.0001), also presents substantial obstacles to control endeavors. The genomic analysis identified the three highly related genomic clusters, indicating the recent TB transmission among migrant populations. The largest clusters comprised war refugees diagnosed in the Czech Republic, TB patients from various regions of Ukraine, and incarcerated individuals diagnosed with pulmonary TB specialized facility in the Kharkiv region, Ukraine, pointing to a national transmission sequence that has persisted for over 14 years. CONCLUSIONS: The data showed that most infections were likely the result of reactivation of latent disease or exposure to TB before migration rather than recent transmission occurring within the host country. However, close monitoring, appropriate treatment, careful surveillance, and social support are crucial in mitigating future risks, though there is currently no evidence of local transmission in EU countries.
- MeSH
- Adult MeSH
- Incidence MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Molecular Epidemiology * MeSH
- Tuberculosis, Multidrug-Resistant epidemiology MeSH
- Mycobacterium tuberculosis * genetics isolation & purification MeSH
- Transients and Migrants * statistics & numerical data MeSH
- Armed Conflicts MeSH
- Prospective Studies MeSH
- Tuberculosis * epidemiology transmission MeSH
- Refugees * statistics & numerical data MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Slovakia MeSH
- Ukraine MeSH
OBJECTIVES: Rapidly diagnosing drug-resistant TB is crucial for improving treatment and transmission control. WGS is becoming increasingly accessible and has added value to the diagnosis and treatment of TB. The aim of the study was to perform WGS to determine the rate of false-positive results of phenotypic drug susceptibility testing (pDST) and characterize the molecular mechanisms of resistance and transmission of mono- and polyresistant Mycobacterium (M.) tuberculosis. METHODS: WGS was performed on 53 monoresistant and 25 polyresistant M. tuberculosis isolates characterized by pDST. Sequencing data were bioinformatically processed to infer mutations encoding resistance and determine the origin of resistance and phylogenetic relationship between isolates studied. RESULTS: The data showed the variable sensitivity and specificity of WGS in comparison with pDST as the gold standard: isoniazid 92.7% and 92.3%; streptomycin 41.9% and 100.0%; pyrazinamide 15% and 94.8%; and ethambutol 75.0% and 98.6%, respectively. We found novel mutations encoding resistance to streptomycin (in gidB) and pyrazinamide (in kefB). Most isolates belonged to lineage 4 (80.1%) and the overall clustering rate was 11.5%. We observed lineage-specific gene variations encoding resistance to streptomycin and pyrazinamide. CONCLUSIONS: This study highlights the clinical potential of WGS in ruling out false-positive drug resistance following phenotypic or genetic drug testing, and recommend this technology together with the WHO catalogue in designing an optimal individualized treatment regimen and preventing the development of MDR TB. Our results suggest that resistance is primarily developed through spontaneous mutations or selective pressure.
- Publication type
- Journal Article MeSH
- Publication type
- Meeting Abstract MeSH
The emergence and spread of resistant tuberculosis (TB) pose a threat to public health, so it is necessary to diagnose the drug-resistant forms in a clinically short time frame and closely monitor their transmission. In this study, we carried out a first whole genome sequencing (WGS)-based analysis of multidrug resistant (MDR) M. tuberculosis strains to explore the phylogenetic lineages diversity, drug resistance mechanisms, and ongoing transmission chains within the country. In total, 65 isolates phenotypically resistant to at least rifampicin and isoniazid collected in the Czech Republic in 2005-2020 were enrolled for further analysis. The agreement of the results obtained by WGS with phenotypic drug susceptibility testing (pDST) in the determination of resistance to isoniazid, rifampicin, pyrazinamide, streptomycin, second-line injectables and fluoroquinolones was more than 80%. Phylogenetic analysis of WGS data revealed that the majority of MDR M. tuberculosis isolates were the Beijing lineage 2.2.1 (n = 46/65; 70.8%), while the remaining strains belonged to Euro-American lineage. Cluster analysis with a predefined cut-off distance of less than 12 single nucleotide polymorphisms between isolates showed 19 isolates in 6 clusters (clustering rate 29.2%), located mainly in the region of the capital city of Prague. This study highlights the utility of WGS as a high-resolution approach in the diagnosis, characterization of resistance patterns, and molecular-epidemiological analysis of resistant TB in the country.
- MeSH
- Antitubercular Agents pharmacology therapeutic use MeSH
- Phylogeny MeSH
- Genotype MeSH
- Isoniazid MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Drug Resistance, Multiple, Bacterial genetics MeSH
- Tuberculosis, Multidrug-Resistant * diagnosis drug therapy epidemiology MeSH
- Mutation MeSH
- Mycobacterium tuberculosis * MeSH
- Rifampin MeSH
- Whole Genome Sequencing methods MeSH
- Tuberculosis * drug therapy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Objective: The resistance of Mycobacterium (M.) tuberculosis to antituberculosis drugs poses a major threat to global public health. Whole genome sequencing (WGS) is an increasingly preferred method in the diagnostics and monitoring of the transmission dynamics of resistant forms of tuberculosis (TB). The aim of the study was to, for the first time, use the sequencing-based analysis to study the transmission and resistance patterns of a systematic and recent collection of extensively drug resistant (XDR) and multidrug resistant tuberculosis (MDR-TB) isolates and to expand our knowledge about drug resistant (DR) TB epidemiological dynamics in Slovakia. Design: A total of 495 patients with pulmonary TB, who were referred to National Reference Laboratory for Mycobacteriology (Vyšné Hágy, Slovakia) in the years 2018-2019, were studied. Out of the total of 495 patients, 4 XDR-TB (0.8%) and 8 (1.6%) MDR-TB isolates were identified by conventional drug susceptibility testing on Löwenstein-Jensen solid medium and subjected to whole genome sequencing. Sequencing data were evaluated for molecular-epidemiological analysis and identification of resistance patterns. Results: Phylogenetic and cluster analysis showed extensive recent transmission events and the predominance of Euro-American lineage 4.7 in Slovakia. However, phylogenetic analysis revealed the circulation of several lineages that originally occurred in Eastern European countries. Resistance patterns for first- and second-line antituberculosis drugs characterized by whole genome sequencing were in high concordance with the results of phenotypic drug susceptibility testing. Conclusion: Forty percent of at least MDR-TB isolates were not genetically linked, indicating that appropriate measures should be taken to monitor and prevent the spread of drug-resistant tuberculosis within the country as well as in other regions.
- Publication type
- Journal Article MeSH
- Review MeSH
Melanoma-bearing Libechov minipig (MeLiM) represents a large animal model for melanoma research. This model shows a high incidence of complete spontaneous regression of melanoma - a phenomenon uncommon in humans. Here, we present the first metabolomic characterisation of the MeLiM model comparing animals with progressing and spontaneously regressing melanomas. Plasma samples of 19 minipigs with progression and 27 minipigs with evidence of regression were analysed by a targeted metabolomic assay based on mass spectrometry detection. Differences in plasma metabolomics patterns were investigated by univariate and multivariate statistical analyses. Overall, 185 metabolites were quantified in each plasma sample. Significantly altered metabolomic profile was found, and 42 features were differentially regulated in plasma. Besides, the machine learning approach was used to create a predictive model utilising Arg/Orn and Arg/ADMA ratios to discriminate minipigs with progressive disease development from minipigs with regression evidence. Our results suggest that progression of melanoma in the MeLiM model is associated with alteration of arginine, glycerophospholipid and acylcarnitines metabolism. Moreover, this study provides targeted metabolomics characterisation of an animal model of melanoma with progression and spontaneous regression of tumours.
- MeSH
- Metabolomics methods MeSH
- Swine, Miniature MeSH
- Disease Models, Animal MeSH
- Swine MeSH
- Disease Progression MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Mental disorders affect 10-20 % of the young population in the world. Major depressive disorder (MDD) is a common mental disease with a multifactorial and not clearly explained pathophysiology. Many cases remain undetected and untreated, which influences patients' physical and mental health and their quality of life also in adulthood. The aim of our pilot study was to assess the prediction value of selected potential biomarkers, including blood cell counts, blood cell ratios, and parameters like peroxiredoxin 1 (PRDX1), tenascin C (TNC) and type IV collagen (COL4) between depressive pediatric patients and healthy peers and to evaluate a short effect of antidepressant treatment. In this study, 27 young depressive patients and 26 non-depressed age-matched controls were included. Blood analyses and immunological assays using commercial kits were performed. Platelet count was the only blood parameter for which the case/control status was statistically significant (p=0.01) in a regression model controlling for the age and gender differences. The results from ELISA analyses showed that the case/control status is a significant predictor of the parameters PRDX1 (p=0.05) and COL4 (p=0.009) in respective regression model considering the age and gender differences between MDD patients and controls. A major finding of this study is that values of platelet count, monocyte to lymphocyte ratio, white blood cell, and monocyte counts were assessed by the Random Forest machine learning algorithm as relevant predictors for discrimination between MDD patients and healthy controls with a power of prediction AUC=0.749.
- MeSH
- Biomarkers analysis MeSH
- Depressive Disorder, Major diagnosis epidemiology psychology MeSH
- Quality of Life MeSH
- Humans MeSH
- Adolescent MeSH
- Pilot Projects MeSH
- Case-Control Studies MeSH
- Check Tag
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Slovakia MeSH
Pulmonary surfactant has a relaxing effect on the airway smooth muscle (ASM), which suggests its role in the pathogenesis of respiratory diseases associated with hyperreactivity of the ASM, such as asthma and chronic obstructive pulmonary disease (COPD). The ASM tone may be directly or indirectly modified by bacterial wall component lipopolysaccharide (LPS). This study elucidated the effect of LPS on the ASM reactivity and the role of surfactant in this interaction. The experiments were performed using ASM of adult guinea pigs by in vitro method of tissue organ bath (ASM unexposed-healthy or exposed to LPS under in vitro conditions) and ASM of animals intraperitoneally injected with LPS at a dose 1 mg/kg of b.w. once a day during 4-day period. Variable response of LPS was controlled by cyclooxygenase inhibitor indomethacin and relaxing effect of exogenous surfactant was studied using leukotriene and histamine receptor antagonists. The exogenous surfactant has relaxing effect on the ASM, but does not reverse LPS-induced smooth muscle contraction. The results further indicate participation of prostanoids and potential involvement of leukotriene and histamine H1 receptors in the airway smooth muscle contraction during LPS exposure.
- MeSH
- Acetates MeSH
- Quinolines MeSH
- Muscle, Smooth drug effects MeSH
- Lipopolysaccharides MeSH
- Guinea Pigs MeSH
- Pulmonary Surfactants pharmacology MeSH
- Pyrilamine MeSH
- Muscle Relaxation drug effects MeSH
- Animals MeSH
- Check Tag
- Guinea Pigs MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
254 stran : ilustrace ; 25 cm
- Conspectus
- Lékařské vědy. Lékařství
- Učební osnovy. Vyučovací předměty. Učebnice
- NML Fields
- výchova a vzdělávání pracovníků ve zdravotnictví
- lékařství
- NML Publication type
- učebnice vysokých škol
- Publication type
- Meeting Abstract MeSH