In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.
- MeSH
- chřipka lidská * farmakoterapie MeSH
- hemaglutininové glykoproteiny viru chřipky metabolismus MeSH
- hemaglutininy farmakologie MeSH
- kyselina N-acetylneuraminová farmakologie metabolismus MeSH
- kyseliny neuraminové MeSH
- lidé MeSH
- neuraminidasa metabolismus MeSH
- virus chřipky A, podtyp H1N1 * MeSH
- virus chřipky A, podtyp H3N2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
d-Arabinofuranosyl-pyrimidine and -purine nucleoside analogues containing alkylthio-, acetylthio- or 1-thiosugar substituents at the C2' position were prepared from the corresponding 3',5'-O-silylene acetal-protected nucleoside 2'-exomethylenes by photoinitiated, radical-mediated hydrothiolation reactions. Although the stereochemical outcome of the hydrothiolation depended on the structure of both the thiol and the furanoside aglycone, in general, high d-arabino selectivity was obtained. The cytotoxic effect of the arabinonucleosides was studied on tumorous SCC (mouse squamous cell) and immortalized control HaCaT (human keratinocyte) cell lines by MTT assay. Three pyrimidine nucleosides containing C2'-butylsulfanylmethyl or -acetylthiomethyl groups showed promising cytotoxicity at low micromolar concentrations with good selectivity towards tumor cells. SAR analysis using a methyl β-d-arabinofuranoside reference compound showed that the silyl-protecting group, the nucleobase and the corresponding C2' substituent are crucial for the cell growth inhibitory activity. The effects of the three most active nucleoside analogues on parameters indicative of cytotoxicity, such as cell size, division time and cell generation time, were investigated by near-infrared live cell imaging, which showed that the 2'-acetylthiomethyluridine derivative induced the most significant functional and morphological changes. Some nucleoside analogues also exerted anti-SARS-CoV-2 and/or anti-HCoV-229E activity with low micromolar EC50 values; however, the antiviral activity was always accompanied by significant cytotoxicity.
- MeSH
- acetaly MeSH
- antivirové látky farmakologie MeSH
- arabinonukleosidy chemie farmakologie MeSH
- COVID-19 * MeSH
- lidé MeSH
- myši MeSH
- nukleosidy farmakologie chemie MeSH
- puriny MeSH
- pyrimidinové nukleosidy * MeSH
- sulfhydrylové sloučeniny chemie MeSH
- thiosacharidy * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Patients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2. It has been shown that the antiviral and antibacterial efficacy can be enhanced by synthetic modifications. We here report the synthesis and biological evaluation of seven derivatives of teicoplanin bearing hydrophobic or superbasic side chain. All but one teicoplanin derivatives were effective in inhibiting SARS-CoV-2 replication in VeroE6 cells. One lipophilic and three perfluoroalkyl conjugates showed activity against SARS-CoV-2 in human Calu-3 cells and against HCoV-229E, an endemic human coronavirus, in HEL cells. Pseudovirus entry and enzyme inhibition assays established that the teicoplanin derivatives efficiently prevent the cathepsin-mediated endosomal entry of SARS-CoV-2, with some compounds inhibiting also the TMPRSS2-mediated surface entry route. The teicoplanin derivatives showed good to excellent activity against Gram-positive bacteria resistant to all approved glycopeptide antibiotics, due to their ability to dually bind to the bacterial membrane and cell-wall. To conclude, we identified three perfluoralkyl and one monoguanidine analog of teicoplanin as dual inhibitors of Gram-positive bacteria and SARS-CoV-2.
- MeSH
- antibakteriální látky chemie MeSH
- antivirové látky chemie MeSH
- COVID-19 * MeSH
- fluorokarbony * farmakologie MeSH
- glykopeptidy chemie MeSH
- grampozitivní bakterie MeSH
- kathepsiny farmakologie MeSH
- lidé MeSH
- SARS-CoV-2 MeSH
- teikoplanin farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Helicobacter pylori (Hp) is a human pathogen that lives in the gastric mucosa of approximately 50% of the world's population causing gastritis, peptic ulcers, and gastric cancer. An increase in resistance to current drugs has sparked the search for new Hp drug targets and therapeutics. One target is the disruption of nucleic acid production, which can be achieved by impeding the synthesis of 6-oxopurine nucleoside monophosphates, the precursors of DNA and RNA. These metabolites are synthesized by Hp xanthine-guanine-hypoxanthine phosphoribosyltransferase (XGHPRT). Here, nucleoside phosphonates have been evaluated, which inhibit the activity of this enzyme with Ki values as low as 200 nM. The prodrugs of these compounds arrest the growth of Hp at a concentration of 50 μM in cell-based assays. The kinetic properties of HpXGHPRT have been determined together with its X-ray crystal structure in the absence and presence of 9-[(N-3-phosphonopropyl)-aminomethyl-9-deazahypoxanthine, providing a basis for new antibiotic development.
- MeSH
- antibakteriální látky chemie metabolismus farmakologie terapeutické užití MeSH
- bakteriální proteiny chemie metabolismus MeSH
- gastrointestinální nemoci farmakoterapie mikrobiologie patologie MeSH
- Helicobacter pylori účinky léků enzymologie MeSH
- hypoxanthinfosforibosyltransferasa chemie metabolismus MeSH
- hypoxanthiny chemie metabolismus farmakologie terapeutické užití MeSH
- infekce vyvolané Helicobacter pylori farmakoterapie patologie MeSH
- kinetika MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- organofosfonáty chemie metabolismus farmakologie terapeutické užití MeSH
- pentosyltransferasy chemie metabolismus MeSH
- prekurzory léčiv chemie metabolismus farmakologie terapeutické užití MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- simulace molekulární dynamiky MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Acyclic nucleoside bisphosphonates (ANbPs) have previously been shown to be good inhibitors of human hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and Plasmodium falciparum (Pf) hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT). On the basis of this scaffold, a new series of ANbPs was synthesized. One of these new ANbPs, [3-(guanine-9-yl)-2-((2-phosphonoethoxy)methyl)propoxy]methylphosphonic acid, exhibited Ki values of 6 and 70 nM for human HGPRT and Pf HGXPRT, respectively. These low Ki values were achieved by inserting an extra carbon atom in the linker connecting the N(9) atom of guanine to one of the phosphonate groups. The crystal structure of this ANbP in complex with human HGPRT was determined at 2.0 Å resolution and shows that it fills three key pockets in the active site. The most potent phosphoramidate prodrugs of these compounds have IC50 values in the low micromolar range in Pf lines and low toxicity in human A549 cells, demonstrating that these ANbPs are excellent antimalarial drug leads.
- MeSH
- antimalarika chemie farmakologie MeSH
- bisfosfonáty chemie farmakologie MeSH
- lidé MeSH
- nukleosidy chemie farmakologie MeSH
- pentosyltransferasy antagonisté a inhibitory metabolismus MeSH
- Plasmodium falciparum účinky léků enzymologie metabolismus MeSH
- simulace molekulového dockingu MeSH
- tropická malárie farmakoterapie enzymologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Two new series of symmetric acyclic nucleoside bisphosphonates (ANbPs) have been synthesised as potential inhibitors of the Plasmodium falciparum (Pf) and vivax (Pv) 6-oxopurine phosphoribosyltransferases. The structural variability between these symmetric ANbPs lies in the number of atoms in the two acyclic linkers connecting the N9 atom of the purine base to each of two phosphonate groups and the branching point of the acyclic moiety relative to the purine base, which occurs at either the alpha or beta positions. Within each series, six different 6-oxopurine bases have been attached. In general, the ANbPs with either guanine or hypoxanthine have lower Ki values than for those containing either the 8-bromo or 7-deaza 6-oxopurine bases. The lowest Ki values obtained for the two parasite enzymes were 0.1μM (Pf) and 0.2μM (Pv) for this series of compounds. Two phosphoramidate prodrugs of these inhibitors exhibited antimalarial activity against Pf in infected erythrocyte cell culture with IC50 values of 0.8 and 1.5μM. These two compounds exhibited low cytotoxicity in human A549 cells having CC50 values of >300μM resulting in an excellent selectivity index.
- MeSH
- antimalarika chemická syntéza farmakologie MeSH
- ATP-fosforibosyltransferasa antagonisté a inhibitory MeSH
- inhibitory enzymů chemická syntéza farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- Plasmodium falciparum účinky léků MeSH
- Plasmodium vivax účinky léků MeSH
- prekurzory léčiv farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Human African Trypanosomiasis (HAT) is a life-threatening infectious disease caused by the protozoan parasite, Trypanosoma brucei (Tbr). Due to the debilitating side effects of the current therapeutics and the emergence of resistance to these drugs, new medications for this disease need to be developed. One potential new drug target is 6-oxopurine phosphoribosyltransferase (PRT), an enzyme central to the purine salvage pathway and whose activity is critical for the production of the nucleotides (GMP and IMP) required for DNA/RNA synthesis within this protozoan parasite. Here, the first crystal structures of this enzyme have been determined, these in complex with GMP and IMP and with three acyclic nucleoside phosphonate (ANP) inhibitors. The Ki values for GMP and IMP are 30.5 μM and 77 μM, respectively. Two of the ANPs have Ki values considerably lower than for the nucleotides, 2.3 μM (with guanine as base) and 15.8 μM (with hypoxanthine as base). The crystal structures show that when two of the ANPs bind, they induce an unusual conformation change to the loop where the reaction product, pyrophosphate, is expected to bind. This and other structural differences between the Tbr and human enzymes suggest selective inhibitors for the Tbr enzyme can be designed.
- MeSH
- druhová specificita MeSH
- hypoxanthinfosforibosyltransferasa antagonisté a inhibitory chemie genetika MeSH
- inhibitory enzymů farmakologie MeSH
- katalytická doména MeSH
- kinetika MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- protozoální proteiny antagonisté a inhibitory chemie genetika MeSH
- rekombinantní proteiny chemie genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- trypanocidální látky farmakologie MeSH
- Trypanosoma brucei brucei účinky léků enzymologie genetika MeSH
- Trypanosoma cruzi enzymologie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Human papillomavirus (HPV) is responsible for cervical cancer, and its role in head and neck carcinoma has been reported. No drug is approved for the treatment of HPV-related diseases but cidofovir (CDV) exhibits selective antiproliferative activity. In this study, we analyzed the effects of CDV-resistance (CDVR) in two HPV(+) (SiHaCDV and HeLaCDV) and one HPV(-) (HaCaTCDV) tumor cell lines. Quantification of CDV metabolites and analysis of the sensitivity profile to chemotherapeutics was performed. Transporters expression related to multidrug-resistance (MRP2, P-gp, BCRP) was also investigated. Alterations of CDV metabolism in SiHaCDV and HeLaCDV, but not in HaCaTCDV, emerged via impairment of UMP/CMPK1 activity. Mutations (P64T and R134M) as well as down-regulation of UMP/CMPK1 expression were observed in SiHaCDV and HeLaCDV, respectively. Altered transporters expression in SiHaCDV and/or HeLaCDV, but not in HaCaTCDV, was also noted. Taken together, these results indicate that CDVR in HPV(+) tumor cells is a multifactorial process.
- MeSH
- ABC transportéry biosyntéza MeSH
- chemorezistence genetika MeSH
- cytidintrifosfát biosyntéza MeSH
- cytosin analogy a deriváty farmakologie MeSH
- fosforylace MeSH
- HeLa buňky MeSH
- infekce papilomavirem farmakoterapie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nádorové buněčné linie MeSH
- nádory děložního čípku farmakoterapie patologie virologie MeSH
- nukleosidmonofosfátkinasa biosyntéza metabolismus MeSH
- organofosfonáty farmakologie MeSH
- Papillomaviridae MeSH
- SLC transportéry biosyntéza MeSH
- uridintrifosfát biosyntéza MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We report on the synthesis of novel conformationally locked nucleoside and nucleotide derivatives, which are structurally closely related to clinically used antivirals such as didanosine and abacavir. As a suitable conformationally rigid substitute of the sugar/pseudosugar ring allowing a permanent stabilization of the nucleoside in North conformation we employed bicyclo[2.2.1]heptane (norbornane) substituted in the bridgehead position with a hydroxymethyl group and in the C-3 position with a nucleobase. Prepared nucleoside derivatives were also converted into appropriate phosphoramidate prodrugs (ProTides) in order to increase delivery of the compounds in the cells. All target compounds were evaluated in a broad antiviral and cytostatic assay panel.
- MeSH
- antivirové látky chemická syntéza MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- norbornany chemická syntéza chemie MeSH
- nukleosidy chemická syntéza chemie MeSH
- nukleotidy chemická syntéza chemie MeSH
- stereoizomerie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Acyclic nucleoside phosphonates (ANPs) that contain a 6-oxopurine base are good inhibitors of the human and Plasmodium falciparum 6-oxopurine phosphoribosyltransferases (PRTs), key enzymes of the purine salvage pathway. Chemical modifications, based on the crystal structures of several inhibitors in complex with the human PRTase, led to the design of a new class of inhibitors--the aza-ANPs. Because of the negative charges of the phosphonic acid moiety, their ability to cross cell membranes is, however, limited. Thus, phosphoramidate prodrugs of the aza-ANPs were prepared to improve permeability. These prodrugs arrest parasitemia with IC50 values in the micromolar range against Plasmodium falciparum-infected erythrocyte cultures (both chloroquine-sensitive and chloroquine-resistant Pf strains). The prodrugs exhibit low cytotoxicity in several human cell lines. Thus, they fulfill two essential criteria to qualify them as promising antimalarial drug leads.
- MeSH
- antimalarika metabolismus MeSH
- hypoxanthinfosforibosyltransferasa antagonisté a inhibitory MeSH
- inhibitory enzymů metabolismus MeSH
- lidé MeSH
- malárie farmakoterapie MeSH
- molekulární modely MeSH
- nukleotidy metabolismus MeSH
- organofosfonáty chemie MeSH
- prekurzory léčiv MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH