The molecular mechanisms linking obstructive sleep apnea syndrome (OSA) to obesity and the development of metabolic diseases are still poorly understood. The role of hypoxia (a characteristic feature of OSA) in excessive fat accumulation has been proposed. The present study investigated the possible effects of hypoxia (4% oxygen) on de novo lipogenesis by tracking the major carbon sources in differentiating 3T3-L1 adipocytes. Gas-permeable cultuware was employed to cultivate 3T3-L1 adipocytes in hypoxia (4%) for 7 or 14 days of differentiation. We investigated the contribution of glutamine, glucose or acetate using 13C or 14C labelled carbons to the newly synthesized lipid pool, changes in intracellular lipid content after inhibiting citrate- or acetate-dependent pathways and gene expression of involved key enzymes. The results demonstrate that, in differentiating adipocytes, hypoxia decreased the synthesis of lipids from glucose (44.1 ± 8.8 to 27.5 ± 3.0 pmol/mg of protein, p < 0.01) and partially decreased the contribution of glutamine metabolized through the reverse tricarboxylic acid cycle (4.6% ± 0.2-4.2% ± 0.1%, p < 0.01). Conversely, the contribution of acetate, a citrate- and mitochondria-independent source of carbons, increased upon hypoxia (356.5 ± 71.4 to 649.8 ± 117.5 pmol/mg of protein, p < 0.01). Further, inhibiting the citrate- or acetate-dependent pathways decreased the intracellular lipid content by 58% and 73%, respectively (p < 0.01) showing the importance of de novo lipogenesis in hypoxia-exposed adipocytes. Altogether, hypoxia modified the utilization of carbon sources, leading to alterations in de novo lipogenesis in differentiating adipocytes and increased intracellular lipid content.
- MeSH
- acetáty * metabolismus farmakologie MeSH
- buněčná diferenciace * účinky léků MeSH
- buňky 3T3-L1 * MeSH
- citrátový cyklus MeSH
- glukosa * metabolismus MeSH
- glutamin * metabolismus MeSH
- hypoxie buňky MeSH
- lipidy biosyntéza MeSH
- lipogeneze * účinky léků MeSH
- metabolismus lipidů účinky léků MeSH
- myši MeSH
- tukové buňky * metabolismus účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Genetic variations in urate transporters play a significant role in determining human urate levels and have been implicated in developing hyperuricemia or gout. Polymorphism in the key urate transporters, such as ABCG2, URAT1, or GLUT9 was well-documented in the literature. Therefore in this study, our objective was to determine the frequency and effect of rare nonsynonymous allelic variants of SLC22A11, SLC22A13, and SLC17A1 on urate transport. In a cohort of 150 Czech patients with primary hyperuricemia and gout, we examined all coding regions and exon-intron boundaries of SLC22A11, SLC22A13, and SLC17A1 using PCR amplification and Sanger sequencing. For comparison, we used a control group consisting of 115 normouricemic subjects. To examine the effects of the rare allelic nonsynonymous variants on the expression, intracellular processing, and urate transporter protein function, we performed a functional characterization using the HEK293A cell line, immunoblotting, fluorescent microscopy, and site directed mutagenesis for preparing variants in vitro. Variants p.V202M (rs201209258), p.R343L (rs75933978), and p.P519L (rs144573306) were identified in the SLC22A11 gene (OAT4 transporter); variants p.R16H (rs72542450), and p.R102H (rs113229654) in the SLC22A13 gene (OAT10 transporter); and the p.W75C variant in the SLC17A1 gene (NPT1 transporter). All variants minimally affected protein levels and cytoplasmic/plasma membrane localization. The functional in vitro assay revealed that contrary to the native proteins, variants p.P519L in OAT4 (p ≤ 0.05), p.R16H in OAT10 (p ≤ 0.05), and p.W75C in the NPT1 transporter (p ≤ 0.01) significantly limited urate transport activity. Our findings contribute to a better understanding of (1) the risk of urate transporter-related hyperuricemia/gout and (2) uric acid handling in the kidneys.
- MeSH
- dna (nemoc) * genetika MeSH
- hyperurikemie * genetika MeSH
- kotransportní proteiny pro sodík a fosfát - typ I * genetika MeSH
- kyselina močová metabolismus MeSH
- lidé MeSH
- přenašeče organických aniontů nezávislé na sodíku * genetika MeSH
- přenašeče organických aniontů * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The OAT1 (SLC22A6) and OAT3 (SLC22A8) urate transporters are located on the basolateral membrane of the proximal renal tubules, where they ensure the uptake of uric acid from the urine back into the body. In a cohort of 150 Czech patients with primary hyperuricemia and gout, we examined the coding regions of both genes using PCR amplification and Sanger sequencing. Variants p.P104L (rs11568627) and p.A190T (rs146282438) were identified in the gene for solute carrier family 22 member 6 (SLC22A6) and variants p.R149C (rs45566039), p.V448I (rs11568486) and p.R513Q (rs145474422) in the gene solute carrier family 22 member 8 (SLC22A8). We performed a functional study of these rare non-synonymous variants using the HEK293T cell line. We found that only p.R149C significantly reduced uric acid transport in vitro. Our results could deepen the understanding of uric acid handling in the kidneys and the molecular mechanism of uric acid transport by the OAT family of organic ion transporters.
- MeSH
- biologický transport MeSH
- dna (nemoc) * genetika metabolismus MeSH
- HEK293 buňky MeSH
- hyperurikemie * genetika MeSH
- kyselina močová metabolismus MeSH
- lidé MeSH
- přenašeče organických aniontů nezávislé na sodíku * genetika MeSH
- protein 1 přenášející organické anionty * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Microsporidia are among the most common microparasites of cladocerans and have potentially significant impact on host populations. However, many of these pathogens are known only from molecular-based studies. We provide ultrastructural data supported by molecular phylogeny for a common microsporidium infecting the Daphnia longispina complex, important planktonic filter-feeders in reservoirs and ponds in the temperate Holarctic region. This parasite, previously characterized only by molecular means, infects adipose cells around the Daphnia midgut and eventually fills the centre of the host body with ovoid-shaped spores. A new microsporidian genus and species belonging to the Agglomeratidae superclade is described as Pseudoberwaldia daphniae gen. et sp. nov. Molecular data indicate its widespread presence in Central European reservoirs (reported as isolate "MIC1") but also in Swedish coastal rockpools ("Ängskärs-klubben"). The most closely related lineage was reported from a caddisfly larva; we thus speculate that this taxon may have an insect secondary host in its life cycle. Morphological characterization and differential diagnosis of most commonly encountered microsporidian taxa infecting hosts in the D. longispina complex in Europe opens new possibilities for studies of their ecological and evolutionary interactions.
- MeSH
- Daphnia mikrobiologie MeSH
- fylogeneze MeSH
- klasifikace MeSH
- Microsporidia klasifikace MeSH
- ribozomální DNA MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Microsporidia (Opisthosporidia, Microsporidia) are frequent parasites of planktonic cladocerans, including Daphnia (Crustacea, Branchiopoda). Analysis of available molecular data (ITS region and partial ssu and lsu rDNA) of these parasites indicates that many microsporidia infecting daphnids have a common ancestor and represent a large clade, which splits during evolution into a number of well supported subclades. These subclades are cytologically different but may be most conveniently characterised by their specific ITS barcode. We have analysed one of these subclades and we describe a new microsporidian genus and species combination, and assemble a large group of structurally indistinguishable microsporidian parasites that infect adipose cells of their hosts and form pyriform spores of a certain type ("obtuse spores"). Obtuse spores are non-infectious by feeding to their crustacean hosts and it is plausible that microsporidia forming them actually are parasites of insects with aquatic larval stages, with an obligate two-host life cycle, analogous to the Amblyospora life cycle involving copepods and mosquitoes.
- MeSH
- Daphnia parazitologie MeSH
- DNA fungální analýza MeSH
- fylogeneze MeSH
- Microsporidia klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Two events have helped to shape protozoology/protistology as a specific scientific discipline. The first such event was the creation of the Society of Protozoologists in the U.S. in 1947 (and of its Journal of Protozoology, first published in 1954), the second event was the First International Conference on Protozoology, held in 1961 in Prague. The history of the Society of Protozoologists was comprehensively treated by Corliss (1998); the history of the Prague Conference is presented here as reminiscences and personal interpretation of events of the author, who was one of the conference organizers and a member of the organization committee. Special attention is given to the personality and scientific accomplishments of Otto Jírovec, the 1961 conference spiritual father and president. It is concluded that the Prague Conference, while establishing the tradition of protistology meetings, helped protistology to attain its present status as a fundamental science discipline, which discovers and interprets the web of life at one of its, basic, "microbial" levels. Protists literally permeate the earth biosphere and in a way represent the "dark matter" of the living world, still awaiting many discoveries.
- MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- Eukaryota * klasifikace genetika izolace a purifikace MeSH
- kongresy jako téma dějiny organizace a řízení MeSH
- lidé MeSH
- Pneumocystis MeSH
- Toxoplasma genetika fyziologie MeSH
- toxoplazmóza dějiny parazitologie MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- Publikační typ
- biografie MeSH
- historické články MeSH
- portréty MeSH
- Geografické názvy
- Československo MeSH
- O autorovi
- Jírovec, Otto, 1907-1972 Autorita
Structural, molecular and life cycle data are presented for two microsporidian species of the genus Berwaldia: B. singularis Larsson, 1981 (type species of the genus) and B. schaefernai Vávra and Larsson, 1994, parasites of Daphnia pulex Leydig, 1860 and Daphnia galeata Sars, 1863, respectively. Analysis of the SSU rDNA gene confirmed the species status of both species and showed that the GenBank sequence data submitted previously in GenBank for the genus Berwaldia, are from microsporidia that are not Berwaldia. Correct SSU rDNA gene sequences for B. schaefernai and B. singularis are now deposited in GenBank. The life cycle of these two species appears incomplete as the spores collected from their respective infected hosts will not infect the same host when fed per os. B. schaefernai appears as a frequent parasite of Daphnia longispina/galeata complex daphnids, influencing the behaviour of the infected host. In addition, two new species, of Berwaldia, one infecting fat body tissues of Daphnia longispina/galeata complex, and the other, infecting hypodermis and fat cells of Simocephalus vetulus (O. F. Müller, 1776) are described.
- MeSH
- Daphnia parazitologie MeSH
- druhová specificita MeSH
- fylogeneze * MeSH
- Microsporidia klasifikace cytologie genetika MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Iridescent (IVs, family Iridoviridae, genus Iridovirus) and cytoplasmic polyhedrosis viruses (CPVs; family Reoviridae, genus Cypovirus) are well known in insects, with thirteen IV species recognized from various orders, and sixteen CPV species known from lepidopterans. In 1975, an IV and CPV were reported in the daphnid, Simocehpalus expinosus, in Florida, but other reported daphnid virus infections seem to be rare. Here we report infected daphnids from woodland and carp ponds in the Czech Republic, Daphnia curvirostris with an IV, and D. pulex and D. ambigua, with CPVs. This suggests these viruses are more common in daphnids, the rarity of reports due to few surveys.
- MeSH
- Daphnia virologie MeSH
- Iridovirus MeSH
- mikroskopie atomárních sil MeSH
- Reoviridae MeSH
- transmisní elektronová mikroskopie MeSH
- virové nemoci veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The microsporidian parasite Globulispora mitoportans, n. g., n. sp., infects the intestinal epithelium of two species of daphnids (Crustacea: Cladocera). Mature spores are thin-walled and possess a novel type of polaroplast with a conspicuous part consisting of globules that occupies a large part of the spore volume. Both developmental stages and the spores possess large, electron-lucent vesicles enveloped by a double membrane and filled with an internal web of filamentous material, corresponding structurally to microsporidian mitosomes. The SSU rRNA phylogeny places Globulispora into a specific "Enterocytospora-like" clade, part of a large "non-enterocytozoonidae" clade, grouping a heterogenous assemblage of microsporidia infecting almost exclusively insects and crustacea.
- MeSH
- buněčné jádro ultrastruktura MeSH
- Daphnia parazitologie MeSH
- DNA fungální chemie izolace a purifikace MeSH
- fylogeneze MeSH
- mikrosporidia neklasifikovaná klasifikace genetika ultrastruktura MeSH
- polymerázová řetězová reakce MeSH
- pravděpodobnostní funkce MeSH
- ribozomální DNA chemie MeSH
- sekvenční seřazení MeSH
- spory hub ultrastruktura MeSH
- transmisní elektronová mikroskopie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.