The effects of gastrointestinal tract microbiota (GTM) on host physiology and health have been the subject of considerable interest in recent years. While a variety of captive bred species have been used in experiments, the extent to which GTM of captive and/or inbred individuals resembles natural composition and variation in wild populations is poorly understood. Using 454 pyrosequencing, we performed 16S rDNA GTM barcoding for 30 wild house mice (Mus musculus) and wild-derived inbred strain mice belonging to two subspecies (M. m. musculus and M. m. domesticus). Sequenced individuals were selected according to a 2 × 2 experimental design: wild (14) vs. inbred origin (16) and M. m. musculus (15) vs. M. m. domesticus (15). We compared alpha diversity (i.e. number of operational taxonomic units - OTUs), beta diversity (i.e. interindividual variability) and microbiota composition across the four groups. We found no difference between M. m. musculus and M. m. domesticus subspecies, suggesting low effect of genetic differentiation between these two subspecies on GTM structure. Both inbred and wild populations showed the same level of microbial alpha and beta diversity; however, we found strong differentiation in microbiota composition between wild and inbred populations. Relative abundance of ~ 16% of OTUs differed significantly between wild and inbred individuals. As laboratory mice represent the most abundant model for studying the effects of gut microbiota on host metabolism, immunity and neurology, we suggest that the distinctness of laboratory-kept mouse microbiota, which differs from wild mouse microbiota, needs to be considered in future biomedical research.
- MeSH
- Bacteria klasifikace MeSH
- divoká zvířata mikrobiologie MeSH
- gastrointestinální trakt mikrobiologie MeSH
- genetická variace * MeSH
- inbrední kmeny myší mikrobiologie MeSH
- metagenom MeSH
- mikrobiota genetika MeSH
- myši MeSH
- RNA ribozomální 16S genetika MeSH
- taxonomické DNA čárové kódování MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The genome of Caenorhabditis elegans encodes more than 280 nuclear hormone receptors (NHRs) in contrast to the 48 NHRs in humans and 18 NHRs in Drosophila. The majority of the C. elegans NHRs are categorized as supplementary nuclear receptors (supnrs) that evolved by successive duplications of a single ancestral gene. The evolutionary pressures that lead to the expansion of NHRs in nematodes, as well as the function of the majority of supnrs, are not known. Here, we have studied the expression of seven genes organized in a cluster on chromosome V: nhr-206, nhr-208, nhr-207, nhr-209, nhr-154, nhr-153 and nhr-136. Reverse transcription-quantitative PCR and analyses using transgenic lines carrying GFP fusion genes with their putative promoters revealed that all seven genes of this cluster are expressed and five have partially overlapping expression patterns including in the pharynx, intestine, certain neurons, the anal sphincter muscle, and male specific cells. Four genes in this cluster are conserved between C. elegans and Caenorhabditis briggsae whereas three genes are present only in C. elegans, the apparent result of a relatively recent expansion. Interestingly, we find that a subset of the conserved and non-conserved genes in this cluster respond transcriptionally to fasting in tissue-specific patterns. Our results reveal the diversification of the temporal, spatial, and metabolic gene expression patterns coupled with evolutionary drift within supnr family members.
- MeSH
- Caenorhabditis elegans genetika metabolismus fyziologie MeSH
- chromozomy MeSH
- duplicitní geny MeSH
- genetická transkripce fyziologie MeSH
- genetická variace fyziologie MeSH
- genom u helmintů MeSH
- hmyz genetika metabolismus MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- multigenová rodina genetika MeSH
- omezení příjmu potravy metabolismus fyziologie MeSH
- receptory cytoplazmatické a nukleární genetika metabolismus MeSH
- savci genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.
- MeSH
- Caenorhabditis elegans chemie metabolismus MeSH
- chromatografie kapalinová metody MeSH
- financování organizované MeSH
- proteiny Caenorhabditis elegans analýza metabolismus MeSH
- proteom analýza metabolismus MeSH
- proteomika metody MeSH
- receptory cytoplazmatické a nukleární fyziologie genetika MeSH
- vývoj svalů genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH