Infectious diseases, including bacterial, fungal, and viral, have once again gained urgency in the drug development pipeline after the recent COVID-19 pandemic. Tuberculosis (TB) is an old infectious disease for which eradication has not yet been successful. Novel agents are required to have potential activity against both drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of TB. In this study, we present a series of 2-phenyl-N-(pyridin-2-yl)acetamides in an attempt to investigate their possible antimycobacterial activity, cytotoxicity on the HepG2 liver cancer cell line, and-as complementary testing-their antibacterial and antifungal properties against a panel of clinically important pathogens. This screening resulted in one compound with promising antimycobacterial activity-compound 12, MICMtb H37Ra = 15.625 μg/mL (56.26 μM). Compounds 17, 24, and 26 were further screened for their antiproliferative activity against human epithelial kidney cancer cell line A498, human prostate cancer cell line PC-3, and human glioblastoma cell line U-87MG, where they were found to possess interesting activity worth further exploration in the future.
- MeSH
- acetamidy * chemie farmakologie MeSH
- antifungální látky farmakologie chemie chemická syntéza MeSH
- antituberkulotika farmakologie chemie MeSH
- buňky Hep G2 MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- Mycobacterium tuberculosis * účinky léků MeSH
- nádorové buněčné linie MeSH
- proliferace buněk * účinky léků MeSH
- protinádorové látky farmakologie chemie MeSH
- pyridiny chemie farmakologie MeSH
- SARS-CoV-2 účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5. However, TGR5 agonists with nonsteroidal structures have not been widely explored. This study aimed at discovering new TGR5 agonists using bile acid derivatives as a basis for a computational approach. We applied a combination of pharmacophore-based, molecular docking, and molecular dynamic (MD) simulation to identify potential compounds as new TGR5 agonists. Through pharmacophore screening and molecular docking, we identified 41 candidate compounds. From these, five candidates were selected based on criteria including pharmacophore features, a docking score of less than 9.2 kcal/mol, and similarity in essential interaction patterns with a reference ligand. Biological assays of the five hits confirmed that Hit-3 activates TGR5 similarly to the bile acid control. This was supported by MD simulation results, which indicated that a hydrogen bond interaction with Tyr240 is involved in TGR5 activation. Hit-3 (CSC089939231) represents a new nonsteroidal lead that can be further optimized to design potent TGR5 agonists.
- MeSH
- lidé MeSH
- ligandy MeSH
- molekulární struktura MeSH
- objevování léků MeSH
- receptory spřažené s G-proteiny * agonisté metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- simulace molekulového dockingu * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- žlučové kyseliny a soli chemie metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This study presents an exploration of the chemical space around derivatives of 3-benzamidopyrazine-2-carboxamides, previously identified as potent antimycobacterial compounds with predicted binding to mycobacterial prolyl-transfer RNA synthetase. New urea derivatives (Series-1) were generally inactive, probably due to their preference for cis-trans conformation (confirmed by density functional theory calculations and experimentally by nuclear overhauser effect spectroscopy NMR). Series-2 (3-benzamidopyrazine-2-carboxamides with disubstituted benzene ring) demonstrated that substituents larger than fluorine are not tolerated in the ortho position of the benzene ring. This series brought two new compounds (21: R = 2-F, 4-Cl and 22: R = 2-F, 4-Br) with in vitro activity against Mycobacterium tuberculosis H37Rv as well as multidrug-resistant clinical isolates, with minimum inhibitory concentration ranging from 6.25 to 25 μg/mL. The lactone-type derivatives 4H-pyrazino[2,3-d][1,3]oxazin-4-ones (Series-3) were inactive, but solvent stability studies of compound 29 indicated that they might be developed to usable lactone prodrugs of inhibitors of mycobacterial aspartate decarboxylase (PanD).
- MeSH
- aminoacyl-tRNA-synthetasy antagonisté a inhibitory metabolismus MeSH
- antituberkulotika * farmakologie chemie chemická syntéza MeSH
- inhibitory enzymů farmakologie chemie chemická syntéza MeSH
- mikrobiální testy citlivosti * MeSH
- molekulární struktura MeSH
- Mycobacterium tuberculosis * účinky léků enzymologie MeSH
- pyraziny farmakologie chemie chemická syntéza MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
Apart from the SARS-CoV-2 virus, tuberculosis remains the leading cause of death from a single infectious agent according to the World Health Organization. As part of our long-term research, we prepared a series of hybrid compounds combining pyrazinamide, a first-line antitubercular agent, and 4-aminosalicylic acid (PAS), a second-line agent. Compound 11 was found to be the most potent, with a broad spectrum of antimycobacterial activity and selectivity toward mycobacterial strains over other pathogens. It also retained its in vitro activity against multiple-drug-resistant mycobacterial strains. Several structural modifications were attempted to improve the in vitro antimycobacterial activity. The δ-lactone form of compound 11 (11') had more potent in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Compound 11 was advanced for in vivo studies, where it was proved to be nontoxic in Galleria mellonella and zebrafish models, and it reduced the number of colony-forming units in spleens in the murine model of tuberculosis. Biochemical studies showed that compound 11 targets mycobacterial dihydrofolate reductases (DHFR). An in silico docking study combined with molecular dynamics identified a viable binding mode of compound 11 in mycobacterial DHFR. The lactone 11' opens in human plasma to its parent compound 11 (t1/2 = 21.4 min). Compound 11 was metabolized by human liver fraction by slow hydrolysis of the amidic bond (t1/2 = 187 min) to yield PAS and its starting 6-chloropyrazinoic acid. The long t1/2 of compound 11 overcomes the main drawback of PAS (short t1/2 necessitating frequent administration of high doses of PAS).
- MeSH
- antituberkulotika chemie MeSH
- COVID-19 * MeSH
- dánio pruhované MeSH
- kyselina aminosalicylová * farmakologie MeSH
- laktony MeSH
- lidé MeSH
- Mycobacterium tuberculosis * MeSH
- myši MeSH
- pyrazinamid farmakologie MeSH
- SARS-CoV-2 MeSH
- tuberkulóza * farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Background: The development of novel antimicrobial drugs is an essential part of combatting the uprising of antimicrobial resistance. Proper hit-to-lead development is crucially needed. Methods & results: We present a hit-expansion study of N-pyrazinyl- and N-pyridyl-hydroxybenzamides with a comprehensive determination of structure-activity relationships. The antimicrobial screening revealed high selectivity to staphylococci along with antimycobacterial activity with the best value of 6.25 μg/ml against Mycobacterium tuberculosis H37Rv. We proved an inhibition of proteosynthesis and a membrane depolarization of methicillin-resistant Staphylococcus aureus. Conclusion: Our results are a good starting point for further development of new antimicrobial compounds, where the next step would be tuning the potential between relatively nonspecific membrane depolarization effect and specific inhibition of proteosynthesis.
Tuberculosis is the number one killer of infectious diseases caused by a single microbe, namely Mycobacterium tuberculosis (Mtb). The success rate of curing this infection is decreasing due to emerging antimicrobial resistance. Therefore, novel treatments are urgently needed. As an attempt to develop new antituberculars effective against both drugs-sensitive and drug-resistant Mtb, we report the synthesis of a novel series inspired by combining fragments from the first-line agents isoniazid and pyrazinamide (series I) and isoniazid with the second-line agent 4-aminosalicylic acid (series II). We identified compound 10c from series II with selective, potent in vitro antimycobacterial activity against both drug-sensitive and drug-resistant Mtb H37Rv strains with no in vitro or in vivo cytotoxicity. In the murine model of tuberculosis, compound 10c caused a statistically significant decrease in colony-forming units (CFU) in spleen. Despite having a 4-aminosalicylic acid fragment in its structure, biochemical studies showed that compound 10c does not directly affect the folate pathway but rather methionine metabolism. In silico simulations indicated the possibility of binding to mycobacterial methionine-tRNA synthetase. Metabolic study in human liver microsomes revealed that compound 10c does not have any known toxic metabolites and has a half-life of 630 min, overcoming the main drawbacks of isoniazid (toxic metabolites) and 4-aminosalicylic acid (short half-life).
- MeSH
- antituberkulotika chemie MeSH
- isoniazid farmakologie MeSH
- kyselina aminosalicylová * farmakologie MeSH
- lidé MeSH
- methionin MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis * MeSH
- myši MeSH
- tuberkulóza * farmakoterapie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is the number one cause of deaths due to a single infectious agent worldwide. The treatment of TB is lengthy and often complicated by the increasing drug resistance. New compounds with new mechanisms of action are therefore needed. We present the design, synthesis, and biological evaluation of pyrazine-based inhibitors of a prominent antimycobacterial drug target - mycobacterial methionine aminopeptidase 1 (MtMetAP1). The inhibitory activities of the presented compounds were evaluated against the MtMetAP1a isoform, and all derivatives were tested against a broad spectrum of myco(bacteria) and fungi. The cytotoxicity of the compounds was also investigated using Hep G2 cell lines. Overall, high inhibition of the isolated enzyme was observed for 3-substituted N-(thiazol-2-yl)pyrazine-2-carboxamides, particularly when the substituent was represented by 2-substituted benzamide. The extent of inhibition was strongly dependent on the used metal cofactor. The highest inhibition was seen in the presence of Ni2+. Several compounds also showed mediocre in vitro potency against Mtb (both Mtb H37Ra and H37Rv). Despite the structural similarities of bacterial and fungal MetAP1 to mycobacterial MtMetAP1, title compounds did not exert antibacterial nor antifungal activity. The reasons behind the higher activity of 2-substituted benzamido derivatives, as well as the correlation of enzyme inhibition with the in vitro growth inhibition activity is discussed.
- MeSH
- aminopeptidasy antagonisté a inhibitory metabolismus MeSH
- antituberkulotika MeSH
- inhibitory enzymů chemická syntéza chemie farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- Mycobacterium tuberculosis účinky léků enzymologie MeSH
- pyraziny chemická syntéza chemie farmakologie MeSH
- racionální návrh léčiv * MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH