Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.
- MeSH
- analýza jednotlivých buněk metody MeSH
- biosenzitivní techniky MeSH
- enzymatické testy metody MeSH
- fluorescenční mikroskopie metody MeSH
- fosforylace fyziologie MeSH
- frizzled receptory metabolismus MeSH
- genový knockout MeSH
- HEK293 buňky MeSH
- kasein kinasa 1 epsilon genetika metabolismus MeSH
- lidé MeSH
- mutageneze cílená MeSH
- oocyty MeSH
- PDZ domény fyziologie MeSH
- protein dishevelled genetika metabolismus MeSH
- rezonanční přenos fluorescenční energie MeSH
- signální dráha Wnt fyziologie MeSH
- simulace molekulární dynamiky MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Casein kinase 1δ/ε (CK1δ/ε) is a key component of noncanonical Wnt signaling pathways, which were shown previously to drive pathogenesis of chronic lymphocytic leukemia (CLL). In this study, we investigated thoroughly the effects of CK1δ/ε inhibition on the primary CLL cells and analyzed the therapeutic potential in vivo using 2 murine model systems based on the Eµ-TCL1-induced leukemia (syngeneic adoptive transfer model and spontaneous disease development), which resembles closely human CLL. We can demonstrate that the CK1δ/ε inhibitor PF-670462 significantly blocks microenvironmental interactions (chemotaxis, invasion and communication with stromal cells) in primary CLL cells in all major subtypes of CLL. In the mouse models, CK1 inhibition slows down accumulation of leukemic cells in the peripheral blood and spleen and prevents onset of anemia. As a consequence, PF-670462 treatment results in a significantly longer overall survival. Importantly, CK1 inhibition has synergistic effects to the B-cell receptor (BCR) inhibitors such as ibrutinib in vitro and significantly improves ibrutinib effects in vivo. Mice treated with a combination of PF-670462 and ibrutinib show the slowest progression of disease and survive significantly longer compared with ibrutinib-only treatment when the therapy is discontinued. In summary, this preclinical testing of CK1δ/ε inhibitor PF-670462 demonstrates that CK1 may serve as a novel therapeutic target in CLL, acting in synergy with BCR inhibitors. Our work provides evidence that targeting CK1 can represent an alternative or addition to the therapeutic strategies based on BCR signaling and antiapoptotic signaling (BCL-2) inhibition.
- MeSH
- chronická lymfatická leukemie farmakoterapie enzymologie genetika MeSH
- HEK293 buňky MeSH
- kasein kinasa 1 epsilon antagonisté a inhibitory genetika metabolismus MeSH
- kasein kinasa Idelta antagonisté a inhibitory genetika metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny antagonisté a inhibitory genetika metabolismus MeSH
- pyrazoly farmakologie MeSH
- pyrimidiny farmakologie MeSH
- systémy cílené aplikace léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dishevelled (Dvl) is a key component in the Wnt/β-catenin signaling pathway. Dvl can multimerize to form dynamic protein aggregates, which are required for the activation of downstream signaling. Upon pathway activation by Wnts, Dvl becomes phosphorylated to yield phosphorylated and shifted (PS) Dvl. Both activation of Dvl in Wnt/β-catenin signaling and Wnt-induced PS-Dvl formation are dependent on casein kinase 1 (CK1) δ/ε activity. However, the overexpression of CK1 was shown to dissolve Dvl aggregates, and endogenous PS-Dvl forms irrespective of whether or not the activating Wnt triggers the Wnt/β-catenin pathway. Using a combination of gain-of-function, loss-of-function, and domain mapping approaches, we attempted to solve this discrepancy regarding the role of CK1ε in Dvl biology. We analyzed mutual interaction of CK1δ/ε and two other Dvl kinases, CK2 and PAR1, in the Wnt/β-catenin pathway. We show that CK2 acts as a constitutive kinase whose activity is required for the further action of CK1ε. Furthermore, we demonstrate that the two consequences of CK1ε phosphorylation are separated both spatially and functionally; first, CK1ε-mediated induction of TCF/LEF-driven transcription (associated with dynamic recruitment of Axin1) is mediated via a PDZ-proline-rich region of Dvl. Second, CK1ε-mediated formation of PS-Dvl is mediated by the Dvl3 C terminus. Furthermore, we demonstrate with several methods that PS-Dvl has decreased ability to polymerize with other Dvls and could, thus, act as the inactive signaling intermediate. We propose a multistep and multikinase model for Dvl activation in the Wnt/β-catenin pathway that uncovers a built-in de-activation mechanism that is triggered by activating phosphorylation of Dvl by CK1δ/ε.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- beta-katenin genetika metabolismus MeSH
- fosfoproteiny genetika metabolismus MeSH
- fosforylace fyziologie MeSH
- HEK293 buňky MeSH
- kasein kinasa 1 epsilon genetika metabolismus MeSH
- kasein kinasa Idelta genetika metabolismus MeSH
- kaseinkinasa II genetika metabolismus MeSH
- lidé MeSH
- myši MeSH
- peptidové mapování MeSH
- proteiny Wnt genetika metabolismus MeSH
- receptor PAR-1 genetika metabolismus MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We are using a candidate gene approach to identify genes contributing to cancer through somatic mutation. Somatic mutations were found in breast cancer samples in the human casein kinase I epsilon (CKIepsilon) gene, a homolog of the Drosophila gene dco in which certain point mutations lead to imaginal disc overgrowth. We therefore created fly genotypes in which the dco gene carried point mutations homologous to those discovered in CKIepsilon, and tested them in vivo. The results show that the most frequent mutation discovered in breast cancer, L39Q, causes a striking overgrowth phenotype in flies. Further experiments show that this mutation affects the newly recognized Fat/Warts signaling pathway, which controls organ size and shape in both flies and mammals. Another mutation, S101R, modifies the mutant phenotype so that the affected tissue disintegrates, mimicking more aggressive forms of breast cancer. Our results thus strongly support the conclusion that CKIepsilon mutations play important roles in breast carcinogenesis.
- MeSH
- alely MeSH
- Drosophila embryologie genetika růst a vývoj MeSH
- fenotyp MeSH
- kasein kinasa 1 epsilon chemie genetika fyziologie MeSH
- larva genetika MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- nádory prsu genetika MeSH
- proliferace buněk MeSH
- proteiny Drosophily chemie genetika fyziologie MeSH
- sekvence aminokyselin MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Breast cancer is one of the most common types of cancer in women. One of the genes that were found mutated in breast cancer is casein kinase 1 epsilon (CK1epsilon). Because CK1epsilon is a crucial regulator of the Wnt signaling cascades, we determined how these CK1epsilon mutations interfere with the Wnt pathway and affect the behavior of epithelial breast cancer cell lines. METHODS: We performed in silico modeling of various mutations and analyzed the kinase activity of the CK1epsilon mutants both in vitro and in vivo. Furthermore, we used reporter and small GTPase assays to identify how mutation of CK1epsilon affects different branches of the Wnt signaling pathway. Based on these results, we employed cell adhesion and cell migration assays in MCF7 cells to demonstrate a crucial role for CK1epsilon in these processes. RESULTS: In silico modeling and in vivo data showed that autophosphorylation at Thr 44, a site adjacent to the breast cancer point mutations in the N-terminal lobe of human CK1epsilon, is involved in positive regulation of the CK1epsilon activity. Our data further demonstrate that, in mammalian cells, mutated forms of CK1epsilon failed to affect the intracellular localization and phosphorylation of Dvl2; we were able to demonstrate that CK1epsilon mutants were unable to enhance Dvl-induced TCF/LEF-mediated transcription, that CK1epsilon mutants acted as loss-of-function in the Wnt/beta-catenin pathway, and that CK1epsilon mutants activated the noncanonical Wnt/Rac-1 and NFAT pathways, similar to pharmacological inhibitors of CK1. In line with these findings, inhibition of CK1 promoted cell migration as well as decreased cell adhesion and E-cadherin expression in the breast cancer-derived cell line MCF7. CONCLUSIONS: In summary, these data suggest that the mutations of CK1epsilon found in breast cancer can suppress Wnt/beta-catenin as well as promote the Wnt/Rac-1/JNK and Wnt/NFAT pathways, thus contributing to breast cancer development via effects on cell adhesion and migration. In terms of molecular mechanism, our data indicate that the breast cancer point mutations in the N-terminal lobe of CK1epsilon, which are correlated with decreased phosphorylation activities of mutated forms of CK1epsilon both in vitro and in vivo, interfere with positive autophosphorylation at Thr 44.
- MeSH
- beta-katenin metabolismus MeSH
- buněčná adheze MeSH
- duktální karcinom prsu genetika metabolismus patologie MeSH
- fosforylace MeSH
- imunoprecipitace MeSH
- kasein kinasa 1 epsilon chemie genetika metabolismus MeSH
- konformace proteinů MeSH
- lidé MeSH
- MAP kinasa-kinasa 4 metabolismus MeSH
- messenger RNA genetika MeSH
- mutace genetika MeSH
- nádorové buněčné linie MeSH
- nádory prsu genetika metabolismus patologie MeSH
- pohyb buněk MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- proliferace buněk MeSH
- proteiny Wnt metabolismus MeSH
- rac1 protein vázající GTP metabolismus MeSH
- transkripční faktory NFATC metabolismus MeSH
- western blotting MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH