The casein kinase 1 enzymes (CK1) form a family of serine/threonine kinases with seven CK1 isoforms identified in humans. The most important substrates of CK1 kinases are proteins that act in the regulatory nodes essential for tumorigenesis of hematological malignancies. Among those, the most important are the functions of CK1s in the regulation of Wnt pathways, cell proliferation, apoptosis and autophagy. In this review we summarize the recent developments in the understanding of biology and therapeutic potential of the inhibition of CK1 isoforms in the pathogenesis of chronic lymphocytic leukemia (CLL), other non-Hodgkin lymphomas (NHL), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and multiple myeloma (MM). CK1δ/ε inhibitors block CLL development in preclinical models via inhibition of WNT-5A/ROR1-driven non-canonical Wnt pathway. While no selective CK1 inhibitors have reached clinical stage to date, one dual PI3Kδ and CK1ε inhibitor, umbralisib, is currently in clinical trials for CLL and NHL patients. In MDS, AML and MM, inhibition of CK1α, acting via activation of p53 pathway, showed promising preclinical activities and the first CK1α inhibitor has now entered the clinical trials.
- MeSH
- antitumorózní látky farmakologie terapeutické užití MeSH
- cílená molekulární terapie * MeSH
- hematologické nádory farmakoterapie enzymologie patologie MeSH
- kasein kinasa I antagonisté a inhibitory chemie metabolismus MeSH
- lidé MeSH
- nádorové kmenové buňky účinky léků metabolismus patologie MeSH
- signální dráha Wnt MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Wnt/β-catenin signaling is a primary pathway for stem cell maintenance during tissue renewal and a frequent target for mutations in cancer. Impaired Wnt receptor endocytosis due to loss of the ubiquitin ligase RNF43 gives rise to Wnt-hypersensitive tumors that are susceptible to anti-Wnt-based therapy. Contrary to this paradigm, we identify a class of RNF43 truncating cancer mutations that induce β-catenin-mediated transcription, despite exhibiting retained Wnt receptor downregulation. These mutations interfere with a ubiquitin-independent suppressor role of the RNF43 cytosolic tail that involves Casein kinase 1 (CK1) binding and phosphorylation. Mechanistically, truncated RNF43 variants trap CK1 at the plasma membrane, thereby preventing β-catenin turnover and propelling ligand-independent target gene transcription. Gene editing of human colon stem cells shows that RNF43 truncations cooperate with p53 loss to drive a niche-independent program for self-renewal and proliferation. Moreover, these RNF43 variants confer decreased sensitivity to anti-Wnt-based therapy. Our data demonstrate the relevance of studying patient-derived mutations for understanding disease mechanisms and improved applications of precision medicine.
- MeSH
- beta-katenin genetika metabolismus MeSH
- HEK293 buňky MeSH
- kasein kinasa I genetika metabolismus MeSH
- lidé MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- nádory genetika metabolismus patologie MeSH
- signální dráha Wnt * MeSH
- ubikvitinligasy genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Primary cilia are organelles necessary for proper implementation of developmental and homeostasis processes. To initiate their assembly, coordinated actions of multiple proteins are needed. Tau tubulin kinase 2 (TTBK2) is a key player in the cilium assembly pathway, controlling the final step of cilia initiation. The function of TTBK2 in ciliogenesis is critically dependent on its kinase activity; however, the precise mechanism of TTBK2 action has so far not been fully understood due to the very limited information about its relevant substrates. In this study, we demonstrate that CEP83, CEP89, CCDC92, Rabin8, and DVL3 are substrates of TTBK2 kinase activity. Further, we characterize a set of phosphosites of those substrates and CEP164 induced by TTBK2 in vitro and in vivo. Intriguingly, we further show that identified TTBK2 phosphosites and consensus sequence delineated from those are distinct from motifs previously assigned to TTBK2. Finally, we show that TTBK2 is also required for efficient phosphorylation of many S/T sites in CEP164 and provide evidence that TTBK2-induced phosphorylations of CEP164 modulate its function, which in turn seems relevant for the process of cilia formation. In summary, our work provides important insight into the substrates-TTBK2 kinase relationship and suggests that phosphorylation of substrates on multiple sites by TTBK2 is probably involved in the control of ciliogenesis in human cells.
- MeSH
- aminokyselinové motivy MeSH
- cilie metabolismus MeSH
- fosforylace MeSH
- fosfoserin metabolismus MeSH
- fosfothreonin metabolismus MeSH
- HEK293 buňky MeSH
- kasein kinasa I metabolismus MeSH
- lidé MeSH
- multiproteinové komplexy metabolismus MeSH
- organogeneze * MeSH
- protein-serin-threoninkinasy chemie metabolismus MeSH
- substrátová specifita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Frizzleds (FZDs) are receptors for secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, initiating an important signal transduction network in multicellular organisms. FZDs are G protein-coupled receptors (GPCRs), which are well known to be regulated by phosphorylation, leading to specific downstream signaling or receptor desensitization. The role and underlying mechanisms of FZD phosphorylation remain largely unexplored. Here, we investigated the phosphorylation of human FZD6 Using MS analysis and a phospho-state- and -site-specific antibody, we found that Ser-648, located in the FZD6 C terminus, is efficiently phosphorylated by casein kinase 1 ϵ (CK1ϵ) and that this phosphorylation requires the scaffolding protein Dishevelled (DVL). In an overexpression system, DVL1, -2, and -3 promoted CK1ϵ-mediated FZD6 phosphorylation on Ser-648. This DVL activity required an intact DEP domain and FZD-mediated recruitment of this domain to the cell membrane. Substitution of the CK1ϵ-targeted phosphomotif reduced FZD6 surface expression, suggesting that Ser-648 phosphorylation controls membrane trafficking of FZD6 Phospho-Ser-648 FZD6 immunoreactivity in human fallopian tube epithelium was predominantly apical, associated with cilia in a subset of epithelial cells, compared with the total FZD6 protein expression, suggesting that FZD6 phosphorylation contributes to asymmetric localization of receptor function within the cell and to epithelial polarity. Given the key role of FZD6 in planar cell polarity, our results raise the possibility that asymmetric phosphorylation of FZD6 rather than asymmetric protein distribution accounts for polarized receptor signaling.
- MeSH
- buněčná membrána metabolismus MeSH
- epitel metabolismus MeSH
- fosfoproteiny imunologie MeSH
- fosforylace MeSH
- frizzled receptory chemie metabolismus MeSH
- HEK293 buňky MeSH
- hmotnostní spektrometrie MeSH
- kasein kinasa I metabolismus MeSH
- lidé MeSH
- protein dishevelled chemie fyziologie MeSH
- protilátky imunologie MeSH
- sekvence aminokyselin MeSH
- serin metabolismus MeSH
- signální transdukce MeSH
- vejcovody metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Several neurodegenerative disorders including Alzheimer's disease (AD) have been connected with deregulation of casein kinase 1 (CK1) activity. Inhibition of CK1 therefore presents a potential therapeutic strategy against such pathologies. Recently, novel class of CK1-specific inhibitors with N-(benzo[d]thiazol-2-yl)-2-phenylacetamide structural scaffold has been discovered. 1-(benzo[d]thiazol-2-yl)-3-phenylureas, on the other hand, are known inhibitors amyloid-beta binding alcohol dehydrogenase (ABAD), an enzyme also involved in pathophysiology of AD. Based on their tight structural similarity, we decided to evaluate series of previously published benzothiazolylphenylureas, originally designed as ABAD inhibitors, for their inhibitory activity towards CK1. Several compounds were found to be submicromolar CK1 inhibitors. Moreover, two compounds were found to inhibit both, ABAD and CK1. Such dual-activity could be of advantage for AD treatment, as it would simultaneously target two distinct pathological processes involved in disease's progression. Based on PAMPA testing both compounds were suggested to permeate the blood-brain barrier, which makes them, together with their unique dual activity, interesting lead compounds for further development.
- MeSH
- 3-hydroxyacyl-CoA-dehydrogenasy metabolismus MeSH
- fenylmočovinové sloučeniny chemie farmakologie MeSH
- inhibitory enzymů chemie farmakologie MeSH
- kasein kinasa I antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- molekulární struktura MeSH
- neurodegenerativní nemoci farmakoterapie metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Phospholipase C (Plc1p) in Saccharomyces cerevisiae is required for normal degradation of repressor Mth1p and expression of the HXT genes encoding cell membrane transporters of glucose. Plc1p is also required for normal localization of glucose transporters to the cell membrane. Consequently, plc1Δ cells display histone hypoacetylation and transcriptional defects due to reduced uptake and metabolism of glucose to acetyl-CoA, a substrate for histone acetyltransferases. In the presence of glucose, Mth1p is phosphorylated by casein kinase I Yck1/2p, ubiquitinated by the SCFGrr1 complex and degraded by the proteasome. Here, we show that while Plc1p does not affect the function of the SCFGrr1 complex or the proteasome, it is required for normal protein level of Yck2p. Since stability of Yck1/2p is regulated by a glucose-dependent mechanism, PLC1 inactivation results in destabilization of Yck1/2p and defect in Mth1p degradation. Based on our results and published data, we propose a model in which plc1Δ mutation causes increased internalization of glucose transporters, decreased transport of glucose into the cells, and consequently decreased stability of Yck1/2p, increased stability of Mth1p and decreased expression of the HXT genes.
- MeSH
- fosfolipasy typu C metabolismus MeSH
- kasein kinasa I chemie metabolismus MeSH
- proteiny přenášející monosacharidy genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- Saccharomyces cerevisiae cytologie genetika metabolismus MeSH
- stabilita enzymů MeSH
- Publikační typ
- časopisecké články MeSH