MicroRNAs are short molecules of RNA regulating most cellular processes via the mechanism of RNA interference. Their dysregulation leads to a disease burden, making them important therapeutic targets. For the successful development of a therapeutic device, the uptake of a functionalized carrier by live cells and the sufficient release of effector therapeutic molecules are limiting factors. Here for the first time, the inhibition of oncogenic microRNA-21 in CT-26 colon cancer cells is achieved, using an advanced nanosystem consisting of fluorescent nanodiamond and antisense RNA. Stable nanocomplexes efficiently deliver antisense RNA into cell cytoplasm, encouraging further study of microRNA-21 function in target cells. Engaging the fluorescent nanoparticle enables monitoring of transfection and release of the antisense RNA load into cell cytoplasm. Importantly, the internalized antisense RNA effectively destroys target microRNA-21 in CT-26 cancer cells. The absence of oncogenic microRNA-21 liberates tumor suppressor genes Pdcd4 and Timp3 from silencing, and results in a decrease of cell invasion and migration, and in the induction of apoptotic cell death. This study uses a nanodiamond-based imaging and delivery system, and shows that the multidimensional performance of the presented device makes nanodiamond-based complexes promising therapeutic devices.
gamma-Fe2O3 nanoparticles obtained by coprecipitation of Fe(II) and Fe(III) chlorides with a base and subsequent oxidation were coated with a shell of hydrophilic biocompatible poly(N,N-dimethylacrylamide) (PDMAAm). Various initiators were attached to the iron oxide surface to enable the use of the "grafting-from" approach for immobilization of PDMAAm. They included 2,2'-azobis(2-methylpropanimidamide) dihydrochloride (AMPA), 2,2'-azobis(N-hydroxy-2-methylpropanimidamide) dihydrochloride (ABHA) and 4-cyano-4-{[1-cyano-3-(N-hydroxycarbamoyl)-1-methylpropyl]azo}pentanoic acid (CCHPA). Engulfment of PDMAAm-coated y-Fe2O3 nanoparticles by murine J774.2 macrophages was investigated. Only some nanoparticles were engulfed by the macrophages. PDMAAm-AMPA-gamma-Fe2O3 and PDMAAm-ABHA-y-Fe2O3 nanoparticles were rapidly engulfed by the cells. In contrast, neat y-Fe2O3 and PDMAAm-CCHPA-gamma-Fe2O3 particles induced formation of transparent vacuoles indicating toxicity of the particles. Thus, PDMAAm-coated AMPA- and ABHA-gamma-Fe2O3 nanoparticles can be recommended as non-toxic labels for mammalian cells.
- MeSH
- akrylamidy chemie farmakologie MeSH
- buněčné linie MeSH
- fluorescenční mikroskopie MeSH
- hydrofobní a hydrofilní interakce účinky léků MeSH
- magnetické jevy MeSH
- magnety * MeSH
- makrofágy cytologie účinky léků metabolismus MeSH
- myši MeSH
- nanočástice chemie ultrastruktura MeSH
- polymerizace účinky léků MeSH
- radiační rozptyl MeSH
- savci metabolismus MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- světlo MeSH
- velikost částic MeSH
- železité sloučeniny farmakologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Iron oxide nanoparticles obtained by the coprecipitation of Fe(II) and Fe(III) salts and oxidation were coated with a novel poly(vinyl acetate-co-5-tert-(butylperoxy)-5-methylhex-1-en-3-yne-co-butyl acrylate-co-maleic anhydride) (PVBM) oligomer to ensure colloidal stability. The magnetic nanoparticles were thoroughly characterized by a range of physico-chemical methods, which proved the presence of the coating on the particles. Experiments with rat mesenchymal stem cells (rMSCs) confirmed that PVBM-coated gamma-Fe2O3 nanoparticles were not cytotoxic and that the average efficiency of stem cell labeling was good and comparable to that obtained with commercial agents. The cells labeled with PVBM-coated gamma-Fe2O3 nanoparticles displayed excellent contrast on magnetic resonance (MR) images. Such particles are thus promising for in vivo MR imaging of transplanted cells. Moreover, PVBM offers the possibility of additional modification by grafting compounds that reduce non-specific protein adsorption.
- MeSH
- barvení a značení metody MeSH
- femur cytologie MeSH
- kovové nanočástice chemie MeSH
- krysa rodu rattus MeSH
- magnetická rezonanční spektroskopie MeSH
- magnetická rezonanční tomografie MeSH
- magnetismus MeSH
- mezenchymální kmenové buňky chemie MeSH
- molekulární struktura MeSH
- povrchové vlastnosti MeSH
- transmisní elektronová mikroskopie MeSH
- viabilita buněk MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH