A general and direct computational scheme to locate the surface separating arbitrarily shaped domains made up of molecules (or any other particles) has been developed and is described and illustrated for several, both artificial and physical examples. The proposed scheme consists of two modules: (i) triangulation and (ii) assignment of simplices to domains. Three different triangulation methods are employed, viz., the Delaunay triangulation, regular triangulation, and quasi-triangulation. In the triangulated system, the assignment step is carried out in two different ways, one based on the characteristic metric of a particular triangulation procedure and the other on the concept of a touching sphere. Some of the combinations of the triangulation and assignment steps lead to methods already used by others to find interfacial or surface molecules, namely the alpha-shape-based method of Usabiaga nad Duque [Phys. Rev. E 79 (2009) 046709] and GITIM of Sega et al. [J. Chem. Phys. 138 (2013) 044110]. The resulting surface is defined not only as a discrete set of particles, but it is build up of facets of the triangulation forming a broken line in two dimensions or a polyhedral surface in three dimensions. Individual molecular layers are identified in a very straightforward manner, starting with the interfacial layer itself and proceeding into the interior of the phase. The proposed scheme is illustrated first by identifying border molecules of pre-sampled domains of several shapes in a plane and then applied to five physically meaningful examples: thin films, near critical water, liquid water slab in an electric field, liquid water at a solid wall, and water at condition of electric-field-induced jetting. Performance of the considered methods is critically assessed. Treatment of domains forming percolating clusters through periodic boundary conditions is also described along with the determination of their periodicity and dimensionality.
- MeSH
- povrchové vlastnosti MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
Geometric models of molecular structures are often described as a set of balls, where balls represent individual atoms. The ability to describe and explore the empty space among these balls is important, e.g., in the analysis of the interaction of enzymes with substrates, ligands and solvent molecules. Voronoi diagrams from the field of computational geometry are often used here, because they provide a mathematical description of how the whole space can be divided into regions assigned to individual atoms. This paper introduces a combination of two different types of Voronoi diagrams into a new hybrid Voronoi diagram - one part of this diagram belongs to the additively weighted (aw-Voronoi) diagram and the other to the power diagram. The boundary between them is controlled by a user-defined constant (the probe radius). Both parts are computed by different algorithms, which are already known. The reduced aw-Voronoi diagram is then obtained by removing the power diagram part from the hybrid diagram. Reduced aw-Voronoi diagrams are perfectly tailored for the analysis of dynamic molecular structures, their computation is faster and storage requirements are lower than in the case of complete aw-Voronoi diagrams. Here, we showed their application to key proteins in cancer research such as p53 and ARID proteins as case study. We identified a biologically relevant cavity in p53 structural ensembles generated by molecular dynamics simulations and analyzed its accessibility, attesting the potential of our approach. This method is relevant for cancer research since it permits to depict a dynamical view of cavities and pockets in proteins that could be affected by mutations in the disease. Our approach opens novel prospects for the study of cancer-related proteins by molecular simulations and the identification of novel targets for drug design.
- MeSH
- algoritmy MeSH
- ligandy MeSH
- proteiny chemie MeSH
- simulace molekulární dynamiky * MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
(13)C NMR chemical shifts of selected finite-size models of pristine zigzag single walled carbon nanotubes (SWCNTs) with a diameter of ∼0.4-0.8nm and length up to 2.2nm were studied theoretically. Results for finite SWCNTs models containing 1, 4 and 10 adjacent bamboo-type units were compared with data obtained for infinite tubes in order to estimate the reliability of small finite models in predicting magnetic properties of real-size nanotubes and to assess their tube-length dependence. SWCNTs were fully optimized using unrestricted density functional theory (DFT-UB3LYP/6-31G*). Cyclacenes, as the shortest models of open-ended zigzag SWCNTs, with systematically varying diameter were calculated as well. GIAO NMR calculations on the SWCNT and cyclacene models were performed using the BHandH density functional combined with relatively small STO-3Gmag basis set, developed by Leszczyński and coworkers for accurate description of magnetic properties. Regular changes of carbon (13)C chemical shifts along the tube axis of real size (6, 0) and (9, 0) zigzag carbon nanotubes were shown. The (13)C NMR shifts according to increasing diameter calculated for zigzag (n, 0, n=5-10) cyclacenes followed the trends observed for zigzag (n, 0) SWCNTs. The results for 4-units long SWCNTs match reasonably well with the data obtained for infinite zigzag (n, 0) SWCNTs, especially to those with bigger diameter (n=8-15). The presence of rim hydrogens obviously affects theoretical (13)C chemical shieldings and shifts in cyclacenes and thus cyclacenes can provide only approximate estimation of (13)C NMR parameters of real-size SWCNTs. The NMR properties predicted for the longest 10-units long models of SWCNTs reliably correspond to results obtained for infinite nanotubes. They were thus able to accurately predict also recently reported experimental chemical shift of chiral (6, 5) SWCNT.
To predict unknown reactivation potencies of 12 mono- and bis-pyridinium aldoximes for VX-inhibited rat acetylcholinesterase (rAChE), three-dimensional quantitative structure-activity relationship (3D QSAR) analysis has been carried out. Utilizing molecular interaction fields (MIFs) calculated by molecular mechanical (MMFF94) and quantum chemical (B3LYP/6-31G*) methods, two satisfactory ligand-based CoMFA models have been developed: 1. R(2)=0.9989, Q(LOO)(2)=0.9090, Q(LTO)(2)=0.8921, Q(LMO(20%))(2)=0.8853, R(ext)(2)=0.9259, SDEP(ext)=6.8938; 2. R(2)=0.9962, Q(LOO)(2)=0.9368, Q(LTO)(2)=0.9298, Q(LMO(20%))(2)=0.9248, R(ext)(2)=0.8905, SDEP(ext)=6.6756. High statistical significance of the 3D QSAR models has been achieved through the application of several data noise reduction techniques (i.e. smart region definition SRD, fractional factor design FFD, uninformative/iterative variable elimination UVE/IVE) on the original MIFs. Besides the ligand-based CoMFA models, an alignment molecular set constructed by flexible molecular docking has been also studied. The contour maps as well as the predicted reactivation potencies resulting from 3D QSAR analyses help better understand which structural features are associated with increased reactivation potency of studied compounds.
- MeSH
- acetylcholinesterasa chemie MeSH
- aktivace enzymů MeSH
- chemické bojové látky chemie MeSH
- cholinesterasové inhibitory chemie MeSH
- GPI-vázané proteiny agonisté antagonisté a inhibitory chemie MeSH
- kinetika MeSH
- krysa rodu rattus MeSH
- kvantitativní vztahy mezi strukturou a aktivitou MeSH
- kvantová teorie MeSH
- ligandy MeSH
- organothiofosforové sloučeniny chemie MeSH
- oximy chemie MeSH
- pyridinové sloučeniny chemie MeSH
- reaktivátory cholinesterázy chemie MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- termodynamika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Density functional theory (DFT) studies on adsorption of several gaseous homo- and hetero-diatomic molecules (AB) including H2, O2, N2, NO and CO on external surface of H-capped pristine armchair (5, 5) single-walled carbon nanotube (SWCNT) were conducted. Structures of C70H10 and the corresponding C70H10-AB adducts were fully optimized at the B3LYP/6-311G* level of theory. Calculated HOMO/LUMO energy gaps (Eg), (13)C NMR chemical shifts and IR/Raman parameters were analyzed and critically compared with available experimental data. Significant changes of carbon NMR atom chemical shifts (up to -100 ppm) and shielding anisotropies (up to -180 ppm) at sites of addition were observed. Functionalized SWCNTs produced IR and Raman spectra different from the pristine nanotube model. The selective changes in vibrational spectra will help in assigning the topology of functionalization at the nanotube wall.
- MeSH
- elektrony MeSH
- kvantová teorie * MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární konformace MeSH
- molekulární modely * MeSH
- nanotrubičky uhlíkové chemie MeSH
- Ramanova spektroskopie * MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Primaquine is a traditional antimalarial drug with low parasitic resistance and generally good acceptance at higher doses, which has been used for over 60 years in malaria treatment. However, several limitations related to its hematotoxicity have been reported. It is believed that this toxicity comes from the hydroxylation of the C-5 and C-6 positions of its 8-aminoquinoline ring before binding to the molecular target: the quinone reductase II (NQO2) human protein. In this study we propose primaquine derivatives, with substitution at position C-6 of the 8-aminoquinoline ring, planned to have better binding to NQO2, compared to primaquine, but with a reduced toxicity related to the C-5 position being possible to be oxidized. On this sense the proposed analogues were suggested in order to reduce or inhibit hydroxylation and further oxidation to hemotoxic metabolites. Five C-6 substituted primaquine analogues were selected by de novo design and further submitted to docking and molecular dynamics simulations. Our results suggest that all analogues bind better to NQO2 than primaquine and may become better antimalarials. However, the analogues 3 and 4 are predicted to have a better activity/toxicity balance.
- MeSH
- chinonreduktasy antagonisté a inhibitory chemie MeSH
- inhibitory enzymů chemie MeSH
- katalytická doména MeSH
- lidé MeSH
- primachin analogy a deriváty chemie MeSH
- sekundární struktura proteinů MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vodíková vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hydrophobicity can either be determined experimentally or predicted by means of commercially available programs. In the studies concerning biological activities of pyrazine analogues of chalcones, 3-(2-hydroxyphenyl)-1-(pyrazin-2-yl)prop-2-en-1-ones were more potent than the corresponding 3-(4-hydroxyphenyl)-1-(pyrazin-2-yl)prop-2-en-1-ones. As the difference in lipophilicity may be a factor responsible for the difference in the potency, R(M) values of the compounds were determined by RP-TLC and compared with logP values calculated by various commercially available programs. Important discrepancies were found between experimental and computational lipophilicity data. Therefore, we have tried to find a reliable method for calculating R(M) values from in silico derived molecular parameters. The R(M) values obtained with the chromatographic system consisting of Silufol UV 254 plates impregnated with silicon oil as the stationary phase and acetone-citrate buffer (pH=3) 50:50 (v/v) as the mobile phase correlated well with van der Waals volumes (V(W)) and hydration energies [Formula: see text] derived of molecular models calculated on RHF/AM1 level.
Our 200ns MD simulations show that even fully modified oligonucleotides bearing the 3'-O-P-CH2-O-5' (but not 3'-O-CH2-P-O-5') phosphonate linkages can be successfully attached to the surface of Human RNase H. It enables to explain that oligonucleotides consisting of the alternating 3'-O-P-CH2-O-5' phosphonate and phosphodiester linkages are capable to elicit the RNase H activity (while the 3'-O-CH2-P-O-5' phosphonates are completely inactive). Stability of the binuclear active site of Human RNase H was achieved using the one-atom model for Mg(2+) in conjunction with a polarized phosphate group of the scissile bond, which is wedged between both magnesium ions. The reference MD simulation (lasting for 1000ns), which was produced using a well-established seven-point (with dummy atoms) model for Mg(2+) led to essentially the same results. The MD run (lasting for 500ns) produced for the Thermus thermophilus Argonaute enzyme shows the transferability of our approach for the stabilization of a binuclear active site. Glu512 was bound in the T. thermophilus Argonaute active site to the 2'-OH of the nucleotide adjacent to the scissile phosphate and one of the two active-site divalent metal ions in exactly the same way as Glu186 in Human RNase H. Glu512 thus completes the catalytic tetrad of Argonaute.
- MeSH
- DNA chemie MeSH
- katalytická doména MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- lidé MeSH
- ligandy MeSH
- organofosfonáty chemie MeSH
- ribonukleasa H chemie MeSH
- RNA chemie MeSH
- simulace molekulární dynamiky * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH