Blattodea
Dotaz
Zobrazit nápovědu
- MeSH
- biologická kontrola škůdců metody MeSH
- chemická bezpečnost normy zákonodárství a právo MeSH
- deratizace * normy MeSH
- dezinsekce * metody normy MeSH
- Evropská unie MeSH
- komáří přenašeči patogenita MeSH
- kontrola škůdců metody zákonodárství a právo MeSH
- oleje prchavé MeSH
- pesticidy MeSH
- švábi patogenita účinky léků MeSH
- MeSH
- dezinsekce metody MeSH
- insekticidy toxicita MeSH
- rezistence k insekticidům * MeSH
- švábi * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
Machadotermes is one of the basal Apicotermitinae genera, living in tropical West Africa. Old observations suggested the presence of a new gland, the intramandibular gland, in Machadotermes soldiers. Here, by combining micro-computed tomography, optical and electron microscopy, we showed that the gland exists in Machadotermes soldiers only as an active exocrine organ, consisting of numerous class III cells (bicellular units made of secretory and canal cells), within which the secretion is produced in rough endoplasmic reticulum, and modified and stored in Golgi apparatus. The final secretion is released out from the body through epicuticular canals running through the mandible cuticle to the exterior. We also studied three other Apicotermitinae, Indotermes, Duplidentitermes, and Jugositermes, in which this gland is absent. We speculate that the secretion of this gland may be used as a general protectant or antimicrobial agent. In addition, we observed that the frontal gland, a specific defensive organ in termites, is absent in Machadotermes soldiers while it is tiny in Indotermes soldiers and small in Duplidentitermes and Jugositermes soldiers. At last, we could also observe in all these species the labral, mandibular and labial glands, other exocrine glands present in all termite species studied so far.
- MeSH
- exokrinní žlázy ultrastruktura MeSH
- Isoptera * ultrastruktura MeSH
- rentgenová mikrotomografie MeSH
- švábi * MeSH
- transmisní elektronová mikroskopie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Klíčová slova
- pylová informační služba,
- MeSH
- alergeny * klasifikace škodlivé účinky MeSH
- alergie etiologie MeSH
- klimatické změny MeSH
- lidé MeSH
- roztoči MeSH
- švábi MeSH
- Check Tag
- lidé MeSH
Juvenile hormone (JH) controls insect reproduction and development through an intracellular receptor complex comprising two bHLH-PAS proteins, the JH-binding Methoprene-tolerant (Met) and its partner Taiman (Tai). Many hemimetabolous insects including cockroaches strictly depend on JH for stimulation of vitellogenesis. In termites, the eusocial hemimetabolans, JH also regulates the development of caste polyphenism. Studies addressing the agonist ligand binding to recombinant JH receptors currently include three species belonging to two holometabolous insect orders, but none that would represent any of the hemimetabolous orders. Here, we examined JH receptors in two representatives of Blattodea, the cockroach Blattella germanica and the termite Prorhinotermes simplex. To test the JH-binding capacity of Met proteins from these species, we performed chemical synthesis and tritium labeling of the natural blattodean JH homolog, JH III. Our improved protocol increased the yield and specific activity of [10-3H]JH III relative to formerly available preparations. Met proteins from both species specifically bound [3H]JH III with high affinity, whereas Met variants mutated at a critical position within the ligand-binding domain were incapable of such binding. Furthermore, JH III and the synthetic JH mimic fenoxycarb stimulated dimerization between Met and Tai components of the respective JH receptors of both species. These data present primary evidence for agonist binding by JH receptors in any hemimetabolous species and provide a molecular basis for JH action in cockroaches and termites.
- MeSH
- Ectobiidae metabolismus MeSH
- hmyzí proteiny metabolismus MeSH
- Isoptera metabolismus MeSH
- seskviterpeny metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Life cycles of parasites, particularly those with complex life histories and developmental pathways, are rarely preserved as fossils in total.1 The evidence is almost universally biased toward incomplete perspectives derived from a single sex or life stage.2,3 Here, we report a piece of Cretaceous Burmese amber that contains 28 males, a larviform female, and two longipede larvae of the wedge-shaped beetle Paleoripiphorus, and its potential cockroach host. Collectively, this fossil represents the complete series of free-living stages (except of the last larval instar) for a 99-million-year-old parasitoid insect from Myanmar (Figure 1 and Supplemental Information). The wedge-shaped beetles (Ripiphoridae) are of special interest among parasitoids because of their obligatory, protelean development in larvae of cockroaches, beetles, bees and wasps.4.
Trail-following behavior is a key to ecological success of termites, allowing them to orient themselves between the nesting and foraging sites. This behavior is controlled by specific trail-following pheromones produced by the abdominal sternal gland occurring in all termite species and developmental stages. Trail-following communication has been studied in a broad spectrum of species, but the "higher" termites (i.e. Termitidae) from the subfamily Syntermitinae remain surprisingly neglected. To fill this gap, we studied the trail-following pheromone in six genera and nine species of Syntermitinae. Our chemical and behavioral experiments showed that (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol is the single component of the pheromone of all the termite species studied, except for Silvestritermes euamignathus. This species produces both (3Z,6Z)-dodeca-3,6-dien-1-ol and neocembrene, but only (3Z,6Z)-dodeca-3,6-dien-1-ol elicits trail-following behavior. Our results indicate the importance of (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol, the most widespread communication compound in termites, but also the repeated switches to other common pheromones as exemplified by S. euamignathus.
- MeSH
- feromony metabolismus MeSH
- Isoptera fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Bacterial endosymbionts evolve under strong host-driven selection. Factors influencing host evolution might affect symbionts in similar ways, potentially leading to correlations between the molecular evolutionary rates of hosts and symbionts. Although there is evidence of rate correlations between mitochondrial and nuclear genes, similar investigations of hosts and symbionts are lacking. Here, we demonstrate a correlation in molecular rates between the genomes of an endosymbiont (Blattabacterium cuenoti) and the mitochondrial genomes of their hosts (cockroaches). We used partial genome data for multiple strains of B. cuenoti to compare phylogenetic relationships and evolutionary rates for 55 cockroach/symbiont pairs. The phylogenies inferred for B. cuenoti and the mitochondrial genomes of their hosts were largely congruent, as expected from their identical maternal and cytoplasmic mode of inheritance. We found a correlation between evolutionary rates of the two genomes, based on comparisons of root-to-tip distances and on comparisons of the branch lengths of phylogenetically independent species pairs. Our results underscore the profound effects that long-term symbiosis can have on the biology of each symbiotic partner.
- MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genom mitochondriální * MeSH
- molekulární evoluce MeSH
- švábi * MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Termites are the principal decomposers in tropical and subtropical ecosystems around the world. Time-calibrated molecular phylogenies show that some lineages of Neoisoptera diversified during the Oligocene and Miocene, and acquired their pantropical distribution through transoceanic dispersal events, probably by rafting in wood. In this paper, we intend to resolve the historical biogeography of one of the earliest branching lineages of Neoisoptera, the Rhinotermitinae. We used the mitochondrial genomes of 27 species of Rhinotermitinae to build two robust time-calibrated phylogenetic trees that we used to reconstruct the ancestral distribution of the group. Our analyses support the monophyly of Rhinotermitinae and all genera of Rhinotermitinae. Our molecular clock trees provided time estimations that diverged by up to 15.6 million years depending on whether or not 3rd codon positions were included. Rhinotermitinae arose 50.4-64.6 Ma (41.7-74.5 Ma 95% HPD). We detected four disjunctions among biogeographic realms, the earliest of which occurred 41.0-56.6 Ma (33.0-65.8 Ma 95% HPD), and the latest of which occurred 20.3-34.2 Ma (15.9-40.4 Ma 95% HPD). These results show that the Rhinotermitinae acquired their distribution through a combination of transoceanic dispersals and dispersals across land bridges.
- MeSH
- fylogeneze MeSH
- fylogeografie * MeSH
- genetická variace MeSH
- genom mitochondriální MeSH
- švábi klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although French Guiana is one of the greatest hotspots of cockroach biodiversity on Earth, there are still undocumented species. From both newly collected and museum specimens, we provide species descriptions for Buboblatta vlasaki sp. nov., Lamproblatta antoni sp. nov., and Euhypnorna bifuscina sp. nov. and report new geographic records for species in the genera Epilampra Burmeister, Euphyllodromia Shelford, Ischnoptera Burmeister, and Euhypnorna Hebard. Finally, we update the checklist of species known from the region to 163 total species records from French Guiana, making it the second greatest hotspot of known cockroach biodiversity on Earth.
- MeSH
- švábi anatomie a histologie klasifikace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Francouzská Guyana MeSH