The use of biocompatible hydrogels has widely extended the potential of additive manufacturing (AM) in the biomedical field leading to the production of 3D tissue and organ analogs for in vitro and in vivo studies.In this work, the direct-write deposition of thermosensitive hydrogels is described as a facile route to obtain 3D cell-laden constructs with controlled 3D structure and stable behavior under physiological conditions.
- MeSH
- 3D tisk * MeSH
- algináty chemie MeSH
- hydrogely chemie MeSH
- lidé MeSH
- mikrotechnologie metody MeSH
- poloxamer chemie MeSH
- polymery chemická syntéza chemie MeSH
- tkáňové inženýrství přístrojové vybavení MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Herein, we report a novel concept of low-cost flexible platform for fluorescence-based biosensor. The surface of polyethylene naphthalate (PEN) foil was exposed to KrF excimer laser through a photolitographic contact mask. Laser initiated surface modification resulted in micro-patterned areas with surface functional groups available for localized covalent immobilization of biotin. High affinity binding protein (albumin-binding domain (ABD) of protein G, Streptococcus G148) recognizing human serum albumin (HSA), genetically fused with streptavidin (SA-ABDwt), was immobilized on the micro-patterned surface through biotin-streptavidin coupling. Fluorescently labelled HSA analyte was detected in several blocking environments, in 1% bovine serum albumin (BSA) and 6% fetal serum albumin (FBS), respectively. We conclude that the presented novel concept enabled us to micropattern functional biosensing layers on the surface of PEN foil in a fast and easy way. It brings all necessary aspects for continuous roll-to-roll fabrication of low-cost optical bioanalytical devices.
- MeSH
- biotin metabolismus MeSH
- fotoelektronová spektroskopie MeSH
- lidé MeSH
- mikrotechnologie metody MeSH
- naftaleny chemie MeSH
- optické jevy * MeSH
- polyethyleny chemie MeSH
- povrchové vlastnosti MeSH
- sérový albumin metabolismus MeSH
- streptavidin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Track-etched detectors (TED) have been used as linear energy transfer (LET) spectrometers in heavy ion beams for many years. LET spectra and depth-dose distribution of a carbon ion beam were measured behind polymethylmethacrylate degraders at Heavy Ion Medical Accelerator in Chiba, Japan. The measurements were performed along monoenergetic beam with energy 290 MeV u(-1) in different positions: (1) at beam extraction area, (2) at beginning, (3) maximum and (4) behind the Bragg peak region (0, 117, 147 and 151 mm of water-equivalent depth, respectively). The LET spectra inside and outside of the primary ion beam have been evaluated. TED record only heavy charged particles with LET above 8-10 keV µm(-1), while electrons and ions with lower LET are not detected. The Geant4 simulation toolkit version 4.9.6.P01 has been used to estimate the contribution of non-detected particles to absorbed dose. Presented results demonstrate the applicability of TED for microdosimetry measurements in therapeutic carbon ion beams.
- MeSH
- částice - urychlovače přístrojové vybavení MeSH
- dávka záření MeSH
- design vybavení MeSH
- elektrony MeSH
- kalibrace MeSH
- lineární přenos energie účinky záření MeSH
- mikrotechnologie metody MeSH
- počítačová simulace MeSH
- polymethylmethakrylát chemie MeSH
- radiometrie přístrojové vybavení MeSH
- těžké ionty * MeSH
- uhlík * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microreactor technology is an interdisciplinary field that combines science and engineering. This new concept in production, analysis and research is finding increasing application in many different fields. Benefits of this new technology pose a vital influence on chemical industry, biotechnology, the pharmaceutical industry and medicine, life science, clinical and environmental diagnostic. In the last few years, together with microplant development, a great part of research investigation is focused on integrated micro-systems, the so called micro-total-analysis-systems (μ-TAS) or lab-on-chip (LOC). They are devices that perform sampling, sample preparation, detection and date processing in integrated model. Cell sorting, cell lysis, single cell analysis and non-destructive single cell experiments on just one microreactor, makes the LOC platform possible. Clinical diagnostic devices are also leaning towards completely integrated, multiple sophisticated biochemical analyses (PCR amplification, cell lysis, separation and detection) all on a single platform and in real time. Special attention is also paid to the usage of microdevices in tissue. Tissue engineering is one of the most promising fields that can lead to in vitro tissue and organ reconstruction ready for implantation and microdevices can be used to promote the migration, proliferation and the differentiation of cells in controlled situations.
- MeSH
- biofyzika MeSH
- biomedicínské technologie MeSH
- biomedicínský výzkum MeSH
- design vybavení MeSH
- DNA analýza MeSH
- financování organizované MeSH
- imunoanalýza metody přístrojové vybavení MeSH
- metabolomika metody MeSH
- metoda terčíkového zámku přístrojové vybavení MeSH
- mikrochemie přístrojové vybavení MeSH
- mikročipové analytické postupy MeSH
- mikrofluidika metody přístrojové vybavení MeSH
- mikrofluidní analytické techniky metody MeSH
- mikrotechnologie metody přístrojové vybavení MeSH
- miniaturizace metody přístrojové vybavení MeSH
- polymerázová řetězová reakce metody přístrojové vybavení MeSH
- separace buněk metody přístrojové vybavení MeSH
- tkáňové inženýrství metody přístrojové vybavení MeSH
- Publikační typ
- přehledy MeSH
Miniaturizace je jedním z velkých témat současnosti a v chemii se také uplatňuje. Z chemických reakcí ve větších měřítkách, v baňkách, se přechází na miniaturizované systémy mikroreaktorů. Postupným vývojem byly optimalizovány materiály i techniky pro práci v mikroměřítku. Mnohé studie se zabývají rozborem dokonce jednotlivých molekul, často se jedná o makromolekuly typu DNA, nebo proteinu. Je možné vytvářet reaktory s objemem attolitrů. Některé experimenty slibují do budoucna užitečnou aplikaci v medicíně, ale i dalších oborech.
Today, miniaturization is one of the top topics and chemistry undergoes it as well. Chemical reactions were usually performed in flasks but at the present time, there are many endeavours to miniaturize them to microreactor systems. Used methods and materials are still being optimised to be able to work in this micro and nano-scale volume. There are many experiments studying even single molecules (often macromolecules like DNA or proteins). It is possible to create reactors even of attoliter volume. Therefore applications in medicine and other disciplines can be expected in the future.