Small differences in physical and chemical properties of H2O and D2O, such as melting and boiling points or pKa, can be traced back to a slightly stronger hydrogen bonding in heavy versus normal water. In particular, deuteration reduces zero-point vibrational energies as a demonstration of nuclear quantum effects. In principle, computationally demanding quantum molecular dynamics is required to model such effects. However, as already demonstrated by Feynmann and Hibbs, zero-point vibrations can be effectively accounted for by modifying the interaction potential within classical dynamics. In the spirit of the Feymann-Hibbs approach, we develop here two water models for classical molecular dynamics by fitting experimental differences between H2O and D2O. We show that a three-site SPCE-based model accurately reproduces differences between properties of the two water isotopes, with a four-site TIP4P-2005/based model in addition capturing also the absolute values of key properties of heavy water. The present models are computationally simple enough to allow for extensive simulations of biomolecules in heavy water relevant, for example, for experimental techniques such as NMR or neutron scattering.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this paper we explore cisplatin interactions with sulfur-containing amino acids in a polarizable continuum model. Two cisplatin hydrated complexes were considered as reactants (chloro complex, cis-[Pt(NH3)2Cl(H2O)]+; hydroxo complex, cis-[Pt(NH3)2(OH)(H2O)]+). We considered the following reaction mechanism: first step, substitution of the aqua ligand by amino acid; second step, dissociative chelate formation. For the optimized complex (at the B3LYP/6-31+G(d)/COSMO level), the energy profile was determined using the B3LYP/6-311++G(2df,2pd) level and two different PCM models-COSMO and UAKS/DPCM methods which were adapted for use on transition metal complexes. The results show thermodynamic preference for bonding by cysteine sulfur followed by the amino group nitrogen, methionine thioether sulfur, and carboxyl-group oxygen. Methionine slightly prefers the Pt-N(Met) coordination in the chloro complex, but in the hydroxo complex it prefers the Pt-S(Met) coordination. A similar trend follows from the bonding energies: BE(Pt-S(Cys)) = 80.8 kcal/mol and BE(Pt-N(Met)) = 76 kcal/mol. According to the experimental observations, the most stable structures found are kappa2(S,N) chelates. In the case of methionine, the same thermodynamic stability is predicted also for the kappa2(N,O) chelate. This differs from the gas-phase results, where kappa2(S,N) and even kappa2(S,O) were found to be more stable than kappa2(N,O) complex.
- MeSH
- chelátory chemie MeSH
- cisplatina chemie MeSH
- cystein chemie MeSH
- dusík chemie MeSH
- financování organizované MeSH
- iminokyseliny chemie MeSH
- ligandy MeSH
- methionin chemie MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- počítačová simulace MeSH
- software MeSH
- statistické modely MeSH
- teoretické modely MeSH
- termodynamika MeSH
- výpočetní biologie metody MeSH
In this work, we investigate the mode of binding of all nine hydrogen-bonded structures of the adenine...thymine base pair. The planar H-bonded structures were optimized at the MP2/cc-pVTZ level, and the respective interaction energies, corrected for the basis set superposition error, were determined with the aug-cc-pVDZ basis set. The energy components were obtained from the DFT-SAPT procedure using the aug-cc-pVDZ basis set. The charge-transfer character of the single structures was estimated using NBO characteristics. It was established that dipole-dipole interaction itself cannot explain the preferred structure of the pair. Of the various energy components, first-order electrostatic energy plays the most important role. Second-order energy (the sum of induction and dispersion energies) amounts to about 56% of the electrostatic energy. The delta(HF) term covering among others the charge-transfer energy is rather large. The importance of delta(HF) is reflected by the NBO characteristics and especially by the NBO charge-transfer energy. The sum of the second-order energy and the delta(HF) term is only slightly smaller than the electrostatic energy (75-77%), which reflects the importance of the nonelectrostatic terms even in the case of strong H-bonded complexes. The WC structure, which exists in DNA, represents the seventh local minimum, while the three most stable structures utilize the N9-H proton donor group of the five-membered ring.
- MeSH
- adenin chemie MeSH
- algoritmy MeSH
- biofyzika metody MeSH
- DNA chemie MeSH
- financování organizované MeSH
- konformace nukleové kyseliny MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- párování bází MeSH
- přenos energie MeSH
- spektrofotometrie infračervená metody MeSH
- statická elektřina MeSH
- thymin chemie MeSH
- vodíková vazba MeSH
Trans Hoogsteen/sugar edge (H/SE) RNA base pairs form one of the six families of RNA base pairs that utilize the 2'-hydroxyl group of ribose for base pairing and play key roles in stabilizing folded RNA molecules. Here, we provide a detailed quantum chemical characterization of intrinsic structures and interaction energies of this base pair family, along with the evaluation of solvent screening effects by a continuum solvent approach. We report DFT-optimized geometries and MP2 interaction energies for all 10 crystallographically identified members of the family, for a representative set of them, using complete basis set extrapolation. For 6 of the 10 base pairs, we had to apply geometric constraints to keep the geometries relevant to RNA. We confirm that the remaining, hitherto undetected, possible members of this family do not have appropriate steric features required to establish stable base pairing in the trans H/SE fashion. The interaction patterns in the trans H/SE family are highly diverse, with gas-phase interaction energies in the range from -1 to -17 kcal/mol. Except for the C/rC and G/rG trans H/SE base pairs, the interaction energy is roughly evenly distributed between the HF and correlation components. Thus, in the trans H/SE base pairs, the relative importance of electron correlation is noticeably smaller than in the cis WC/SE or cis and trans SE/SE base pairs, but still larger than in canonical base pairs. The trans H/SE A/rG base pair is the intrinsically most stable member of this family. This base pair is also known as the sheared AG base pair and belongs to the most prominent set of RNA base pairs utilized in molecular building blocks of functional RNAs. For all trans H/SE base pairs that we identified, in addition to conventional base pairing, viable alternative structures were stabilized by amino-acceptor interactions. In the QM calculations, these amino-acceptor complexes appear to be equally as stable as those with common H-bonds, and more importantly, the switch to amino-acceptor interaction does not require any significant geometrical rearrangement of the base pairs. Such interactions are worthy of further investigations, as X-ray crystallography cannot unambiguously distinguish between conventional and amino-acceptor interactions involving the 2'-hydroxyl group, formation of such interactions is usually not considered, and molecular modeling force fields do not include such interactions properly as a result of neglect of aminogroup pyramidalization.
The structure of proteins as well as their folding/unfolding equilibrium are commonly attributed to H-bonding and hydrophobic interactions. We have used the molecular dynamic simulations in an explicit water environment based on the standard empirical potential as well as more accurately (and thus also more reliably) on the QM/MM potential. The simulations where the dispersion term was suppressed have led to a substantial change of the tryptophan-cage protein structure (unfolded structure). This structure cannot fold without the dispersion energy term, whereas, if it is covered fully, the system finds its native structure relatively quickly. This implies that after such physical factors as temperature and pH, the dispersion energy is an important factor in protein structure determination as well as in the protein folding/unfolding equilibrium. The loss of dispersion also affected the R-helical structure. On the other hand, weakening the electrostatic interactions (and thus H-bonding) affected the R-helical structure only to a minor extent.
The dependence of the effective chemical shielding anisotropy (effective CSA, Deltasigma(eff)) on the phi and psi peptide backbone torsion angles was calculated in the l-alanyl-l-alanine (LALA) peptide using the DFT method. The effects of backbone conformation, molecular charge including the cation, zwitterion, and anion forms of the LALA peptide, and the scaling taking into account the length of the dipolar vector were calculated for the effective CSAs in order to assess their structural behaviors and to predict their magnitudes which can be probed for the beta-sheet and alpha-helix backbone conformations via measurement of the cross-correlated relaxation rates (CCR rates). Twenty different CSA-DD cross-correlation mechanisms involving the amide nitrogen and carbonyl carbon chemical shielding tensors and the C(alpha)H(alpha) (alpha-carbon group), NH(N) (amide group), C(alpha)H(N), NH(alpha), C'H(alpha), and C'H(N) (alpha = alpha1, alpha2) dipolar vectors were investigated. The X-C(alpha)H(alpha) (X = N, C'; alpha = alpha1, alpha2) cross-correlations, which had already been studied experimentally, exhibited overall best performance of the calculated effective CSAs in the LALA molecule; they spanned the largest range of values upon variation of the psi and phi torsions and depended dominantly on only one of the two backbone torsion angles. The X-NH(N) (X = N, C') cross-correlations, which had been also probed experimentally, depended on both backbone torsions, which makes their structural assignment more difficult. The N-NH(alpha2) and N-C'H(alpha1) cross-correlations were found to be promising for the determination of various backbone conformations due to the large calculated range of the scaled effective CSA values and due to their predominant dependence on the psi and phi torsions, respectively. The 20 calculated dependencies of effective CSAs on the two backbone torsion angles can facilitate the structural interpretation of CCR rates.
The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that initiates catalysis by deprotonating the 2'-OH nucleophile at the cleavage site, while a hydrated magnesium ion likely protonates the 5'-oxygen leaving group. In contrast, some mechanistic studies support the role of C75 acting as general acid and thus being protonated before the reaction. We report combined quantum chemical/molecular mechanical calculations for the C75 general base pathway, utilizing the available structural data for the wild type HDV genomic ribozyme as a starting point. Several starting configurations differing in magnesium ion placement were considered and both one-dimensional and two-dimensional potential energy surface scans were used to explore plausible reaction paths. Our calculations show that C75 is readily capable of acting as the general base, in concert with the hydrated magnesium ion as the general acid. We identify a most likely position for the magnesium ion, which also suggests it acts as a Lewis acid. The calculated energy barrier of the proposed mechanism, approximately 20 kcal/mol, would lower the reaction barrier by approximately 15 kcal/mol compared with the uncatalyzed reaction and is in good agreement with experimental data.
Deltahedral metallacarborane compounds have recently been discovered as potent, specific, stable, and nontoxic inhibitors of HIV-1 protease (PR), the major target for AIDS therapy. The 2.15 A-resolution X-ray structure has exhibited a nonsymmetrical binding of the parental compound [Co(3+)-(C2B9H11)2](-) (GB-18) into PR dimer and a symmetrical arrangement in the crystal of two PR dimer complexes into a tetramer. In order to explore structural and energetic details of the inhibitor binding, quantum mechanics coupled with molecular mechanics approach was utilized. Realizing the close positioning of anionic inhibitors in the active site cavity, the possibility of an exchange of structural water molecules Wat50 and Wat128 by Na+ counterions was studied. The energy profiles for the rotation of the GB-18 molecules along their longitudinal axes in complex with PR were calculated. The results show that two Na+ counterions are present in the active site cavity and provide energetically favorable and unfavorable positions for carbon atoms within the carborane cages. Eighty-one rotamer combinations of four molecules of GB-18 bound to PR out of 4 x 10(5) are predicted to be highly populated. These results lay ground for further calculations of interaction energies between GB-18 and amino acids of PR active site and will make it possible to interpret computationally the binding of similar metallacarborane molecules to PR as well as to resistant PR variants. Moreover, this computational tool will allow the design of new, more potent metallacarborane-based HIV-1 protease inhibitors.
Molecular dynamics (MD) simulations at normal and high temperature were used to study the flexibility and malleability of three microsomal cytochromes P450 (CYPs): CYP3A4, CYP2C9, and CYP2A6. Comparison of B-factors (describing the atomic fluctuations) between X-ray and MD data shows that the X-ray B-factors are significantly lower in the regions where the crystal contacts occur than for other regions. Consequently, the conclusions about CYP flexibility based solely on the X-ray data might be misleading. Comparison of flexibility patterns of the three CYPs enabled common features and variations in flexibility and malleability of the studied CYPs to be identified. The previously described pattern of flexibility in topological elements of microsomal CYPs (a rigid heme binding core, a malleable distal side and intermediately flexible proximal side) was confirmed. These topological features provide an important combination of high stereo- and regio-specificity (mediated by the relative rigidity in the neighborhood of the heme), together with high substrate promiscuity due to the more flexible active site and the malleability of the distal side. The data acquired here show that the malleability of the three studied CYPs correlates with their substrate specificity: CYP2A6 has a narrow substrate range and is the most rigid, CYP3A4 is the most promiscuous CYP known and is the most malleable, and CYP2C9 is intermediate in terms of both its substrate specificity and malleability. Thus, the malleability of CYPs is probably a major determinant of their substrate specificity.
- MeSH
- aromatické hydroxylasy chemie metabolismus MeSH
- cytochrom P-450 CYP3A chemie metabolismus MeSH
- financování organizované MeSH
- játra metabolismus MeSH
- konformace proteinů MeSH
- kumariny metabolismus MeSH
- léčivé přípravky metabolismus MeSH
- lidé MeSH
- molekulární modely MeSH
- nikotin metabolismus MeSH
- steroidy metabolismus MeSH
- substrátová specifita MeSH
- systém (enzymů) cytochromů P-450 chemie metabolismus MeSH
- tabák metabolismus MeSH
- teplota MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
The anionic sugar-phosphate backbone of nucleic acids substantially contributes to their structural flexibility. To model nucleic acid structure and dynamics correctly, the potentially sampled substates of the sugar-phosphate backbone must be properly described. However, because of the complexity of the electronic distribution in the nucleic acid backbone, its representation by classical force fields is very challenging. In this work, the three-dimensional potential energy surfaces with two independent variables corresponding to rotations around the alpha and gamma backbone torsions are studied by means of high-level ab initio methods (B3LYP/6-31+G*, MP2/6-31+G*, and MP2 complete basis set limit levels). The ability of the AMBER ff99 [Wang, J. M.; Cieplak, P.; Kollman, P. A. J. Comput. Chem. 2000, 21, 1049-1074] and parmbsc0 [Perez, A.; Marchan, I.; Svozil, D.; Sponer, J.; Cheatham, T. E.; Laughten, C. A.; Orozco, M. Biophys. J. 2007, 92, 3817-3829] force fields to describe the various alpha/gamma conformations of the DNA backbone accurately is assessed by comparing the results with those of ab initio quantum chemical calculations. Two model systems differing in structural complexity were used to describe the alpha/gamma energetics. The simpler one, SPM, consisting of a sugar and methyl group linked through a phosphodiester bond was used to determine higher-order correlation effects covered by the CCSD(T) method. The second, more complex model system, SPSOM, includes two deoxyribose residues (without the bases) connected via a phosphodiester bond. It has been shown by means of a natural bond orbital analysis that the SPSOM model provides a more realistic representation of the hyperconjugation network along the C5'-O5'-P-O3'-C3' linkage. However, we have also shown that quantum mechanical investigations of this model system are nontrivial because of the complexity of the SPSOM conformational space. A comparison of the ab initio data with the ff99 potential energy surface clearly reveals an incorrect ff99 force-field description in the regions where the gamma torsion is in the trans conformation. An explanation is proposed for why the alpha/gamma flips are eliminated so successfully when the parmbsc0 force-field modification is used.