"No. CZ.02.1.01/0.0/0.0/16_019/0000845"
Dotaz
Zobrazit nápovědu
Testosterone derivatives and related compounds (such as anabolic-androgenic steroids-AAS) are frequently misused by athletes (both professional and amateur) wishing to promote muscle development and strength or to cover AAS misuse. Even though these agents are vastly regarded as abusive material, they have important pharmacological activities that cannot be easily replaced by other drugs and have therapeutic potential in a range of conditions (e.g., wasting syndromes, severe burns, muscle and bone injuries, anemia, hereditary angioedema). Testosterone and related steroids have been in some countries treated as controlled substances, which may affect the availability of these agents for patients who need them for therapeutic reasons in a given country. Although these agents are currently regarded as rather older generation drugs and their use may lead to serious side-effects, they still have medicinal value as androgenic, anabolic, and even anti-androgenic agents. This review summarizes and revisits the medicinal use of compounds based on the structure and biological activity of testosterone, with examples of specific compounds. Additionally, some of the newer androgenic-anabolic compounds are discussed such as selective androgen receptor modulators, the efficacy/adverse-effect profiles of which have not been sufficiently established and which may pose a greater risk than conventional androgenic-anabolic agents.
- MeSH
- lidé MeSH
- nové syntetické drogy chemie terapeutické užití MeSH
- prekurzory léčiv chemie terapeutické užití MeSH
- rostliny chemie MeSH
- steroidy chemie terapeutické užití MeSH
- testosteron agonisté analogy a deriváty chemie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review deals with two overlapping issues, namely polymer chemistry and deep eutectic solvents (DESs). With regard to polymers, specific aspects of synthetic polymers, polymerization processes producing such polymers, and natural cellulose-based nanopolymers are evaluated. As for DESs, their compliance with green chemistry requirements, their basic properties and involvement in polymer chemistry are discussed. In addition to reviewing the state-of-the-art for selected kinds of polymers, the paper reveals further possibilities in the employment of DESs in polymer chemistry. As an example, the significance of DES polarity and polymer polarity to control polymerization processes, modify polymer properties, and synthesize polymers with a specific structure and behavior, is emphasized.
The establishment of phytoextraction crops on highly contaminated soils can be limited by metal toxicity. A recent proposal has suggested establishing support crops during the critical initial phase by metal immobilization through soil amendments followed by subsequent mobilization using elemental sulphur to enhance phytoextraction efficiency. This 'combined phytoremediation' approach is tested for the first time in a pot experiment with a highly contaminated soil. During a 14-week period, relatively metal-tolerant maize was grown in a greenhouse under immobilization (before sulphur (S) application) and mobilization (after S application) conditions with soil containing Cd, Pb and Zn contaminants. Apart from the control (C) sample, the soil was amended with activated carbon (AC), lignite (Lig) or vermicompost (VC) all in two different doses (dose 1~45 g additive kg-1 soil and dose 2~90 g additive kg-1 soil). Elemental S was added as a mobilization agent in these samples after 9 weeks. Biomass production, nutrient and metal bioavailability in the soil were determined, along with their uptake by plants and the resulting remediation factors. Before S application, Cd and Zn mobility was reduced in all the AC, Lig and VC treatments, while Pb mobility was increased only in the Lig1 and VC1 treatments. Upon sulphur application, Fe, Mn, Cd, Pb and Zn mobility was not significantly affected in the C, AC and VC treatments, nor total Cd, Pb and Zn contents in maize shoots. Increased sulphate, Mn, Cd, Pb and Zn mobilities in soil together with related higher total S, Mn, Pb and Zn contents in shoots were observed in investigated treatments in the last sampling period. The highest biomass production and the lowest metal toxicity were seen in the VC treatments. These results were associated with effective metal immobilization and showed the trend of steady release of some nutrients. The highest remediation factors and total elemental content in maize shoots were recorded in the VC treatments. This increased phytoremediation efficiency by 400% for Cd and by 100% for Zn compared to the control. Considering the extreme metal load of the soil, it might be interesting to use highly metal-tolerant plants in future research. Future investigations could also explore the effect of carbonaceous additives on S oxidation, focusing on the specific microorganisms and redox reactions in the soil. In addition, the homogeneous distribution of the S rate in the soil should be considered, as well as longer observation times.
- MeSH
- biodegradace MeSH
- biologická dostupnost MeSH
- biomasa MeSH
- dřevěné a živočišné uhlí chemie MeSH
- fosfor farmakokinetika MeSH
- kompostování MeSH
- kukuřice setá účinky léků růst a vývoj metabolismus MeSH
- látky znečišťující půdu analýza farmakokinetika MeSH
- půda chemie MeSH
- regenerace a remediace životního prostředí metody MeSH
- síra * farmakokinetika MeSH
- těžké kovy analýza farmakokinetika MeSH
- výhonky rostlin účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH