Automatic variables extraction Dotaz Zobrazit nápovědu
Thanks to technical progress and the availability of virtual data, sex estimation methods as part of a biological profile are undergoing an inevitable evolution. Further reductions in subjectivity, but potentially also in measurement errors, can be brought by approaches that automate the extraction of variables. Such automatization also significantly accelerates and facilitates the specialist's work. The aim of this study is (1) to apply a previously proposed algorithm (Kuchař et al. 2021) to automatically extract 10 variables used for the DSP2 sex estimation method, and (2) to test the robustness of the new automatic approach in a current heterogeneous population. For the first aim, we used a sample of 240 3D scans of pelvic bones from the same individuals, which were measured manually for the DSP database. For the second aim a sample of 108 pelvic bones from the New Mexico Decedent Image Database was used. The results showed high agreement between automatic and manual measurements with rTEM below 5% for all dimensions except two. The accuracy of final sex estimates based on all 10 variables was excellent (error rate 0.3%). However, we observed a higher number of undetermined individuals in the Portuguese sample (25% of males) and the New Mexican sample (36.5% of females). In conclusion, the procedure for automatic dimension extraction was successfully applied both to a different type of data and to a heterogeneous population.
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- pánevní kosti * diagnostické zobrazování MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- soudní antropologie * metody MeSH
- určení pohlaví podle kostry * metody MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Portugalsko MeSH
The main drive force in apnea current diagnostic is to reduce overwhelming number of sleep disorders candidates by means of very simple-to-use, comfortable and cheap methodology. The proposed framework is based only on automatic analysis of electrocardiogram signal. The feature extraction stage was performed using methods of Heart Rate Variability and Detrended Fluctuation analysis. Feature-spaces formed using these two methods were used as input to a Long Short-Term Memory Artificial Neural Network chosen for its capability to find temporally dependencies in the data. The framework was evaluated on Challenge 2000 Physionet database yielding successful rate 82.1%, sensitivity 85.5% and specificity 80.1%.
- MeSH
- algoritmy MeSH
- diagnóza počítačová metody MeSH
- financování organizované MeSH
- lidé MeSH
- neuronové sítě MeSH
- paměť MeSH
- počítačové zpracování signálu MeSH
- polysomnografie metody MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované MeSH
- senzitivita a specificita MeSH
- srdeční frekvence MeSH
- syndromy spánkové apnoe diagnóza patofyziologie MeSH
- Check Tag
- lidé MeSH
Variable Labels in Dialog Box Lists .9 -- Dialog Box Pushbuttons 10 -- Subdialog Boxes .11 -- Selecting Variables - Results .38 -- To Read Excel 5 Files with ODBC .39 -- ASCII Text Data Files 40 -- Define Fixed Variables 65 -- Moving Variables .66 -- Changing Data Type .67 -- Go to Case 67 -- Search for Data 68 -- Case .78 -- Recode into Different Variables 80 -- Rank Cases .82 -- Rank Cases: Types 83 -- Rank Cases: Ties .83 -- Automatic Recode 84 -- Time Series Data Transformations .85 -- Define Dates .86 -- Create Time
1st ed. xxix, 701 s.
- Klíčová slova
- SPSS Base 8.0,
- Konspekt
- Lékařské vědy. Lékařství
- NLK Obory
- lékařská informatika
Status Bar 19 -- Dialog Boxes 20 -- Dialog Box Pushbuttons 21 -- Subdialog Boxes 21 -- Selecting Variables 45 -- DATA LIST Command Additional Features -- Define Freefield Variables 50 -- File Information 52 Data 65 -- Cutting, Copying, and Pasting Data Values 66 -- Inserting New Cases 67 -- Inserting New Variables 79 -- Recode into Different Variables 81 -- Rank Cases 83 -- Rank Cases: Types 84 -- Rank Cases: Ties 85 -- Automatic Recode 86 -- Time Series Data Transformations 87 -- Define Dates 87 -- Create Time Series
[1st ed.] xxvi, 628 s.
- Klíčová slova
- SPSS,
- Konspekt
- Lékařské vědy. Lékařství
- NLK Obory
- lékařská informatika
coverage of the target population in the key datasets of Denmark, Finland, -- Sweden and Iceland 36 -- Automatic extraction of electronic data is prevalent in 13 countries .37 -- Twelve countries reported consistently Number of countries reporting sources of variables within national datasets.37 -- Table 2.5. Variables considered as being among the most sensitive within national -- health datasets .74 -- Table
OECD health policy studies, ISSN 2074-3181
197 stran : ilustrace ; 28 cm
- MeSH
- dokumentace MeSH
- dostupnost zdravotnických služeb MeSH
- důvěrnost informací MeSH
- ekonomika a organizace zdravotní péče MeSH
- integrované poskytování zdravotní péče MeSH
- osobní údaje MeSH
- veřejné zdravotnictví - informatika MeSH
- zdravotní politika MeSH
- zdravotnické informační systémy MeSH
- Konspekt
- Veřejné zdraví a hygiena
- NLK Obory
- veřejné zdravotnictví
- ekonomie, ekonomika, ekonomika zdravotnictví
- NLK Publikační typ
- studie
OBJECTIVE: Age-at-death estimation is usually done manually by experts. As such, manual estimation is subjective and greatly depends on the past experience and proficiency of the expert. This becomes even more critical if experts need to evaluate individuals with unknown population affinity or with affinity that they are not familiar with. The purpose of this study is to design a novel age-at-death estimation method allowing for automatic evaluation on computers, thus eliminating the human factor. METHODS: We used a traditional machine-learning approach with explicit feature extraction. First, we identified and described the features that are relevant for age-at-death estimation. Then, we created a multi-linear regression model combining these features. Finally, we analysed the model performance in terms of Mean Absolute Error (MAE), Mean Bias Error (MBE), Slope of Residuals (SoR) and Root Mean Squared Error (RMSE). RESULTS: The main result of this study is a population-independent method of estimating an individual's age-at-death using the acetabulum of the pelvis. Apart from data acquisition, the whole procedure of pre-processing, feature extraction and age estimation is fully automated and implemented as a computer program. This program is a part of a freely available web-based software tool called CoxAGE3D, which is available at https://coxage3d.fit.cvut.cz/. Based on our dataset, the MAE of the presented method is about 10.7 years. In addition, five population-specific models for Thai, Lithuanian, Portuguese, Greek and Swiss populations are also given. The MAEs for these populations are 9.6, 9.8, 10.8, 10.5 and 9.2 years, respectively. Our age-at-death estimation method is suitable for individuals with unknown population affinity and provides acceptable accuracy. The age estimation error cannot be completely eliminated, because it is a consequence of the variability of the ageing process of different individuals not only across different populations but also within a certain population.
- MeSH
- acetabulum * diagnostické zobrazování MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- lineární modely MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- software * MeSH
- soudní antropologie * metody MeSH
- strojové učení * MeSH
- určení kostního věku * metody MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Extracellular vesicles (EVs) function as important conveyers of information between cells and thus can be exploited as drug delivery systems or disease biomarkers. Transmission electron microscopy (TEM) remains the gold standard method for visualisation of EVs, however the analysis of individual EVs in TEM images is time-consuming if performed manually. Therefore, we present here a software tool for computer-assisted evaluation of EVs in TEM images. TEM ExosomeAnalyzer detects EVs based on their shape and edge contrast criteria and subsequently analyses their size and roundness. The software tool is compatible with common negative staining protocols and isolation methods used in the field of EV research; even with challenging TEM images (EVs both lighter and darker than the background, images containing artefacts or precipitated stain, etc.). If the fully-automatic analysis fails to produce correct results, users can promptly adjust the detected seeds of EVs as well as their boundaries manually. The performance of our tool was evaluated for three different modes with variable levels of human interaction, using two datasets with various heterogeneity. The semi-automatic mode analyses EVs with high success rate in the homogenous dataset (F1 score 0.9094, Jaccard coefficient 0.8218) as well as in the highly heterogeneous dataset containing EVs isolated from cell culture medium and patient samples (F1 score 0.7619, Jaccard coefficient 0.7553). Moreover, the extracted size distribution profiles of EVs isolated from malignant ascites of ovarian cancer patients overlap with those derived by cryo-EM and are comparable to NTA- and TRPS-derived data. In summary, TEM ExosomeAnalyzer is an easy-to-use software tool for evaluation of many types of vesicular microparticles and is available at http://cbia.fi.muni.cz/exosome-analyzer free of charge for non-commercial and research purposes. The web page contains also detailed description how to use the software tool including a video tutorial.
- Publikační typ
- časopisecké články MeSH
Natural Language Understanding -- 1 -- Automatic Recognition of Medical Terminology (Immunology) -- S Modegi 366 -- v -- Table of Contents -- Automatic Extraction of Acronym-meaning Pairs from MEDLINE Databases Knowledge Representation 579 -- Automatic Extraction of Linguistic Knowledge from an International Classification Bulechek 692 -- The Automatic Analysis of Gait and Gesture (AGILE 97) -- V. Enatescu, I. Verweij: SEMI-AUTOMATIC ENCODING AND REPORT GENERATING OF 708 MEDICAL INFORMATION.
IFIP world conference series on medical informatics Studies in health technology and informatics
sv. ; 27 cm
- MeSH
- informační systémy MeSH
- lékařská informatika MeSH
- lékařství MeSH
- Publikační typ
- kongresy MeSH
- sborníky MeSH
- Konspekt
- Lékařské vědy. Lékařství
- NLK Obory
- lékařská informatika
Baev sky 352 -- An Efficient Algorithm for Automatic Decoding of ECG Signals, -- F.A. Application of the Medical Data Warehousing Architecture Epidware to -- Epidemiological Follow-Up: Data Extraction McAllister 631 -- Classification of Metabolic Patients Using Dynamic Variables, S. Delamarre andP. le Beux 875 -- xvi -- Automatic Enrichment of the Unified Medical Language System Starting
Studies in health technology and informatics, ISSN 0926-9630 volume 68
xvii, 1009 stran : ilustrace, tabulky ; 25 cm
- Konspekt
- Lékařské vědy. Lékařství
- NLK Obory
- lékařská informatika
Fragmented QRS (fQRS) is an electrocardiographic (ECG) marker of myocardial conduction abnormality, characterized by additional notches in the QRS complex. The presence of fQRS has been associated with an increased risk of all-cause mortality and arrhythmia in patients with cardiovascular disease. However, current binary visual analysis is prone to intra- and inter-observer variability and different definitions are problematic in clinical practice. Therefore, objective quantification of fQRS is needed and could further improve risk stratification of these patients. We present an automated method for fQRS detection and quantification. First, a novel robust QRS complex segmentation strategy is proposed, which combines multi-lead information and excludes abnormal heartbeats automatically. Afterwards extracted features, based on variational mode decomposition (VMD), phase-rectified signal averaging (PRSA) and the number of baseline-crossings of the ECG, were used to train a machine learning classifier (Support Vector Machine) to discriminate fragmented from non-fragmented ECG-traces using multi-center data and combining different fQRS criteria used in clinical settings. The best model was trained on the combination of two independent previously annotated datasets and, compared to these visual fQRS annotations, achieved Kappa scores of 0.68 and 0.44, respectively. We also show that the algorithm might be used in both regular sinus rhythm and irregular beats during atrial fibrillation. These results demonstrate that the proposed approach could be relevant for clinical practice by objectively assessing and quantifying fQRS. The study sets the path for further clinical application of the developed automated fQRS algorithm.
- MeSH
- algoritmy MeSH
- elektrokardiografie * metody MeSH
- fibrilace síní * diagnóza MeSH
- lidé MeSH
- strojové učení MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH