Extracellular recordings in neurons
Dotaz
Zobrazit nápovědu
Proper classification of action potentials from extracellular recordings is essential for making an accurate study of neuronal behavior. Many spike sorting algorithms have been presented in the technical literature. However, no comparative analysis has hitherto been performed. In our study, three widely-used publicly-available spike sorting algorithms (WaveClus, KlustaKwik, OSort) were compared with regard to their parameter settings. The algorithms were evaluated using 112 artificial signals (publicly available online) with 2-9 different neurons and varying noise levels between 0.00 and 0.60. An optimization technique based on Adjusted Mutual Information was employed to find near-optimal parameter settings for a given artificial signal and algorithm. All three algorithms performed significantly better (p<0.01) with optimized parameters than with the default ones. WaveClus was the most accurate spike sorting algorithm, receiving the best evaluation score for 60% of all signals. OSort operated at almost five times the speed of the other algorithms. In terms of accuracy, OSort performed significantly less well (p<0.01) than WaveClus for signals with a noise level in the range 0.15-0.30. KlustaKwik achieved similar scores to WaveClus for signals with low noise level 0.00-0.15 and was worse otherwise. In conclusion, none of the three compared algorithms was optimal in general. The accuracy of the algorithms depended on proper choice of the algorithm parameters and also on specific properties of the examined signal.
- MeSH
- akční potenciály fyziologie MeSH
- algoritmy MeSH
- elektrofyziologie metody MeSH
- lidé MeSH
- neurony fyziologie MeSH
- počítačové zpracování signálu MeSH
- validace softwaru MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- validační studie MeSH
BACKGROUND: Extracellular microelectrode recording (MER) is a prominent technique for studies of extracellular single-unit neuronal activity. In order to achieve robust results in more complex analysis pipelines, it is necessary to have high quality input data with a low amount of artifacts. We show that noise (mainly electromagnetic interference and motion artifacts) may affect more than 25% of the recording length in a clinical MER database. NEW METHOD: We present several methods for automatic detection of noise in MER signals, based on (i) unsupervised detection of stationary segments, (ii) large peaks in the power spectral density, and (iii) a classifier based on multiple time- and frequency-domain features. We evaluate the proposed methods on a manually annotated database of 5735 ten-second MER signals from 58 Parkinson's disease patients. COMPARISON WITH EXISTING METHODS: The existing methods for artifact detection in single-channel MER that have been rigorously tested, are based on unsupervised change-point detection. We show on an extensive real MER database that the presented techniques are better suited for the task of artifact identification and achieve much better results. RESULTS: The best-performing classifiers (bagging and decision tree) achieved artifact classification accuracy of up to 89% on an unseen test set and outperformed the unsupervised techniques by 5-10%. This was close to the level of agreement among raters using manual annotation (93.5%). CONCLUSION: We conclude that the proposed methods are suitable for automatic MER denoising and may help in the efficient elimination of undesirable signal artifacts.
- MeSH
- artefakty * MeSH
- evokované potenciály fyziologie MeSH
- Fourierova analýza MeSH
- hluk MeSH
- lidé MeSH
- mikroelektrody škodlivé účinky MeSH
- mozek cytologie MeSH
- neurony fyziologie MeSH
- počítačové zpracování signálu * MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The supraoptic nuclei (SON), the hypothalamic release site of vasopressin and oxytocin, receive a non-glutamatergic, excitatory input from the caudal medulla that uses noradrenaline and ATP as neurotransmitters. Here, we studied the actions of extracellular ATP on SON neurons in hypothalamic slices isolated from the brains of 16- to 24-day-old rats. Whole-cell current clamp recordings performed 1-6 h after isolation showed that exogenous ATP application increased the frequency of action potentials and induced the depolarization of resting membranes. Voltage clamp recordings showed that ATP increased the frequency of GABAergic or glutamatergic spontaneous synaptic currents without changing their amplitude and evoked inward current (126±13 pA) in about 80% of SON neurons. The application of ATPγS and 2MeSATP mimicked the effects of ATP, but 2MeSADP, 2MeSAMP and αβmeATP had no effect. The P2X7 receptor agonist, BzATP, did not induce an inward current, but it increased intracellular calcium concentration in non-neuronal SON cells in slices. Suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) inhibited ATP-induced currents, whereas pH 6.5 and ivermectin, a specific allosteric modulator of the P2X4 receptor, potentiated ATP-induced currents. The P2Y1-selective antagonist, 2'-deoxy-N⁶-methyladenosine 3',5'-bisphosphate tetrasodium salt (MRS 2179), had no effect on ATP-induced responses. Quantitative real-time PCR showed that P2X2>P2X7>P2X4 purinergic receptor mRNAs were expressed in the SON tissue, but the levels of P2X1, P2X3, P2X5, P2X6, P2Y1, P2Y2 and P2Y12 mRNA were minor. These results show that SON neurons express functional presynaptic and extrasynaptic P2X2 and P2X4 receptors that modulate glutamate and GABA release and control the electrical excitability of SON neurons.
- MeSH
- adenosintrifosfát farmakologie MeSH
- akční potenciály účinky léků fyziologie MeSH
- GABA sekrece MeSH
- krysa rodu rattus MeSH
- kyselina glutamová sekrece MeSH
- metoda terčíkového zámku MeSH
- neurony účinky léků sekrece MeSH
- nucleus supraopticus účinky léků metabolismus MeSH
- orgánové kultury - kultivační techniky MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- potkani Wistar MeSH
- purinergní receptory P2X2 metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The present study investigated the effects of nesfatin-1 on gastric distension (GD)-responsive neurons via an interaction with corticotropin-releasing factor (CRF) receptor signaling in the ventromedial hypothalamic nucleus (VMH), and the potential regulation of these effects by hippocampal projections to VMH. Extracellular single-unit discharges were recorded in VHM following administration of nesfatin-1. The projection of nerve fibers and expression of nesfatin-1 were assessed by retrograde tracing and fluoro-immunohistochemical staining, respectively. Results showed that there were GD-responsive neurons in VMH; Nesfatin-1 administration and electrical stimulation of hippocampal CA1 sub-region altered the firing rate of these neurons. These changes could be partially blocked by pretreatment with the non-selective CRF antagonist astressin-B or an antibody to NUCB2/nesfatin-1. Electrolytic lesion of CA1 hippocampus reduced the effects of nesfatin-1 on VMH GD-responsive neuronal activity. These studies suggest that nesfatin-1 plays an important role in GD-responsive neuronal activity through interactions with CRF signaling pathways in VMH. The hippocampus may participate in the modulation of nesfatin-1-mediated effects in VMH.
- MeSH
- akční potenciály fyziologie MeSH
- DNA vazebné proteiny metabolismus MeSH
- gastrointestinální motilita fyziologie MeSH
- hormon uvolňující kortikotropin metabolismus MeSH
- krysa rodu rattus MeSH
- neurony fyziologie MeSH
- nucleus ventromedialis hypothalami fyziologie MeSH
- potkani Wistar MeSH
- proteiny nervové tkáně metabolismus MeSH
- proteiny vázající vápník metabolismus MeSH
- žaludek fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The hypothalamic suprachiasmatic nuclei (SCN), the circadian master clock in mammals, releases ATP in a rhythm, but the role of extracellular ATP in the SCN is still unknown. In this study, we examined the expression and function of ATP-gated P2X receptors (P2XRs) in the SCN neurons of slices isolated from the brain of 16- to 20-day-old rats. Quantitative RT-PCR showed that the SCN contains mRNA for P2X 1-7 receptors and several G-protein-coupled P2Y receptors. Among the P2XR subunits, the P2X2 > P2X7 > P2X4 mRNAs were the most abundant. Whole-cell patch-clamp recordings from SCN neurons revealed that extracellular ATP application increased the frequency of spontaneous GABAergic IPSCs without changes in their amplitudes. The effect of ATP appears to be mediated by presynaptic P2X2Rs because ATPγS and 2MeS-ATP mimics, while the P2XR antagonist PPADS blocks, the observed enhancement of the frequency of GABA currents. There were significant differences between two SCN regions in that the effect of ATP was higher in the ventrolateral subdivision, which is densely innervated from outside the SCN. Little evidence was found for the presence of P2XR channels in somata of SCN neurons as P2X2R immunoreactivity colocalized with synapsin and ATP-induced current was observed in only 7% of cells. In fura-2 AM-loaded slices, BzATP as well as ADP stimulated intracellular Ca(2+) increase, indicating that the SCN cells express functional P2X7 and P2Y receptors. Our data suggest that ATP activates presynaptic P2X2Rs to regulate inhibitory synaptic transmission within the SCN and that this effect varies between regions.
- MeSH
- adenosintrifosfát farmakologie MeSH
- antagonisté excitačních aminokyselin farmakologie MeSH
- biofyzikální jevy účinky léků MeSH
- blokátory sodíkových kanálů farmakologie MeSH
- GABA farmakologie MeSH
- inhibitory agregace trombocytů farmakologie MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- messenger RNA metabolismus MeSH
- metoda terčíkového zámku MeSH
- nervový přenos účinky léků MeSH
- nervový útlum účinky léků MeSH
- neurony účinky léků MeSH
- novorozená zvířata MeSH
- nucleus suprachiasmaticus cytologie MeSH
- potkani Wistar MeSH
- purinergní látky farmakologie MeSH
- purinergní receptory P2X genetika metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- synaptické potenciály účinky léků MeSH
- techniky in vitro MeSH
- tetrodotoxin farmakologie MeSH
- vápník metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
... Principles of Signaling -- And Organization 3 -- Signaling in Simple Neuronal Circuits 4 -- Complex Neuronal ... ... in Relation to Higher -- Functions 4 -- Organization of the Retina 5 -- Shapes and Connections of Neurons ... ... Signals from Neurons with -- Electrodes 11 -- Noninvasive Techniques for Recording Neuronal -- Activity ... ... 29 -- Recording Configurations with Patch Electrodes 29 -- Intracellular Recording with Microelectrodes ... ... and Glial Cell Precursors 482 -- Migration of Neurons in the CNS 483 -- Extracellular Matrix Adhesion ...
4th ed. XIX,580,A-8,B-5,C-8,G-7,BB-60,I-10 : obr.,tab.,grafy.
There are powerful pathways descending from the auditory cortex (AC) to the inferior colliculus (IC), yet their function is not fully understood. The aim of this study is to examine the effects of a reversible cortical inactivation, achieved by cooling of the AC, on the responses of neurons in the rat IC. Extracellular single-unit or multi-unit activity was recorded in the IC of anaesthetized rats with a 16-channel multielectrode probe introduced along the IC dorso-ventral axis through the dorsal cortex (DCIC) to the central nucleus of the IC (CIC). Cooling of the AC produced an increase in spontaneous activity and magnitude of the sound-evoked response in 47% of the IC neurons. Maximal changes in the neuronal activity were observed in the DCIC and the central part of the CIC. The final segments of the sustained responses to 60 ms stimuli and the off responses were more affected than the onset segments. Inactivation of the AC resulted in a suppression of the post-excitatory inhibition and neuronal adaptation, which was reflected in a pronounced enhancement of synchronized responses to a series of fast repeated clicks. The response parameters recovered, at least partly, to the pre-cooling levels 1 h after the cooling cessation. The frequency tuning properties of the IC neurons did not show any significant changes during the cooling period. The results demonstrate that AC cooling inactivates excitatory corticofugal pathways and results in a less activated intrinsic inhibitory network in the IC.
- MeSH
- akustická stimulace MeSH
- časové faktory MeSH
- colliculus inferior metabolismus patologie patofyziologie MeSH
- fyziologická adaptace MeSH
- GABAergní neurony metabolismus MeSH
- nervový útlum MeSH
- potkani Long-Evans MeSH
- sluchová dráha patofyziologie MeSH
- sluchové evokované potenciály MeSH
- sluchové korové centrum metabolismus patologie patofyziologie MeSH
- terapeutická hypotermie * MeSH
- termoregulace * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
... -- 4 The Cytology of Neurons 67 -- James H. ... ... the Shape of the Neuron 72 -- The Neurons That Mediate the Stretch Reflex Differ in Morphology and Transmitter ... ... 76 -- The Motor Neuron Conveys Central Motor Commands to the Muscle Fiber 77 -- A Single Motor Neuron ... ... Are Acute or Chronic 700 -- Motor Neuron Diseases Do Not Affect Sensory Neurons 700 -- Motor Neuron ... ... Is Controlled by Signals From the Neuronal Target 1051 -- The Survival of a Neuron Is Also Regulated ...
4th ed. xxxiii, 1414 s. : il., tab., grafy ; 30 cm
- MeSH
- chování MeSH
- molekulární biologie MeSH
- nemoci nervového systému MeSH
- nervový systém MeSH
- neurochemie MeSH
- neurofyziologie MeSH
- neurony MeSH
- neurovědy MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Fyziologie člověka a srovnávací fyziologie
- NLK Obory
- neurovědy
- biologie
Brain-specific link protein Bral2 represents a substantial component of perineuronal nets (PNNs) enwrapping neurons in the central nervous system. To elucidate the role of Bral2 in auditory signal processing, the hearing function in knockout Bral2(-/-) (KO) mice was investigated using behavioral and electrophysiological methods and compared with wild type Bral2(+/+) (WT) mice. The amplitudes of the acoustic startle reflex (ASR) and the efficiency of the prepulse inhibition of ASR (PPI of ASR), produced by prepulse noise stimulus or gap in continuous noise, was similar in 2-week-old WT and KO mice. Over the 2-month postnatal period the increase of ASR amplitudes was significantly more evident in WT mice than in KO mice. The efficiency of the PPI of ASR significantly increased in the 2-month postnatal period in WT mice, whereas in KO mice the PPI efficiency did not change. Hearing thresholds in 2-month-old WT mice, based on the auditory brainstem response (ABR) recordings, were significantly lower at high frequencies than in KO mice. However, amplitudes and peak latencies of individual waves of click-evoked ABR did not differ significantly between WT and KO mice. Temporal resolution and neural adaptation were significantly better in 2-month-old WT mice than in age-matched KO mice. These results support a hypothesis that the absence of perineuronal net formation at the end of the developmental period in the KO mice results in higher hearing threshold at high frequencies and weaker temporal resolution ability in adult KO animals compared to WT mice.
- MeSH
- akustická stimulace metody MeSH
- časové faktory MeSH
- extracelulární matrix - proteiny nedostatek MeSH
- fyziologická adaptace fyziologie MeSH
- myši inbrední C57BL MeSH
- myši kmene 129 MeSH
- myši knockoutované MeSH
- myši MeSH
- nervová síť růst a vývoj metabolismus MeSH
- periferní nervy růst a vývoj metabolismus MeSH
- prepulsní inhibice fyziologie MeSH
- proteiny nervové tkáně nedostatek MeSH
- sluchové kmenové evokované potenciály fyziologie MeSH
- úleková reakce fyziologie MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH