Li, Lingling* Dotaz Zobrazit nápovědu
Pseudomonas mandelii SW-3, isolated from the Napahai plateau wetland, can survive in cold environments. The mechanisms underlying the survival of bacteria in low temperatures and high altitudes are not yet fully understood. In this study, the whole genome of SW-3 was sequenced to identify the genomic features that may contribute to survival in cold environments. The results showed that the genome size of strain SW-3 was 6,538,059 bp with a GC content of 59%. A total of 67 tRNAs, a 34,110 bp prophage sequence, and a large number of metabolic genes were found. Based on 16S rRNA gene phylogeny and average nucleotide identity analysis among P. mandelii, SW-3 was identified as a strain belonging to P. mandelii. In addition, we clarified the mechanisms by which SW-3 survived in a cold environment, providing a basis for further investigation of host-phage interaction. P. mandelii SW-3 showed stress resistance mechanisms, including glycogen and trehalose metabolic pathways, and antisense transcriptional silencing. Furthermore, cold shock proteins and glucose 6-phosphate dehydrogenase may play pivotal roles in facilitating adaptation to cold environmental conditions. The genome-wide analysis provided us with a deeper understanding of the cold-adapted bacterium.
- MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- fyziologická adaptace * genetika MeSH
- genom bakteriální * MeSH
- nízká teplota * MeSH
- profágy genetika MeSH
- Pseudomonas * genetika klasifikace MeSH
- RNA ribozomální 16S * genetika MeSH
- sekvenování celého genomu MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
Thuricin 4AJ1, produced by Bacillus thuringiensis strain 4AJ1, showed inhibition activity against Bacillus cereus 0938 and ATCC 10987. It began to appear in the stationary phase and reached its maximum activity level of 209.958 U at 18 h against B. cereus 0938 and 285.689 U at 24 h against B. cereus ATCC 10987. Tricine-SDS-PAGE results showed that the partly purified thuricin 4AJ1 was about 6.5 kDa. The molecular weights of the known B. thuringiensis bacteriocins and the ones obtained by the two mainstream websites for predicting bacteriocins were inconsistent with the size of the thuricin 4AJ1, indicating that the bacteriocin obtained in this study may have a novel structure. Based on the biochemical properties, the thuricin 4AJ1 activities increased after treatment with proteinase K and lipase II, and were not affected by a-amylase, catalase, α-chymotrypsin VII and α-chymotrypsin II. It was heat tolerant, being active up to 90º C. In the pH 3-10 range, it maintained most of its activity. Finally, the sensitivity of the strain 4AJ1 to commonly used antibiotics was tested. In view of its stability and antibacterial activity, thuricin 4AJ1 may be applied as a food biopreservative.
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacillus cereus účinky léků MeSH
- Bacillus thuringiensis chemie metabolismus MeSH
- bakteriociny chemie izolace a purifikace farmakologie MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- molekulová hmotnost MeSH
- potravinářská mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Selinexor combined with dexamethasone has shown activity in patients with heavily pre-treated multiple myeloma. In a phase 1b/2 study, the combination of oral selinexor with bortezomib (a proteasome inhibitor) and dexamethasone induced high response rates with low rates of peripheral neuropathy, the main dose-limiting toxicity of bortezomib. We aimed to evaluate the clinical benefit of weekly selinexor, bortezomib, and dexamethasone versus standard bortezomib and dexamethasone in patients with previously treated multiple myeloma. METHODS: This phase 3, randomised, open-label trial was done at 123 sites in 21 countries. Patients aged 18 years or older, who had multiple myeloma, and who had previously been treated with one to three lines of therapy, including proteasome inhibitors, were randomly allocated (1:1) to receive selinexor (100 mg once per week), bortezomib (1·3 mg/m2 once per week), and dexamethasone (20 mg twice per week), or bortezomib (1·3 mg/m2 twice per week for the first 24 weeks and once per week thereafter) and dexamethasone (20 mg four times per week for the first 24 weeks and twice per week thereafter). Randomisation was done using interactive response technology and stratified by previous proteasome inhibitor therapy, lines of treatment, and multiple myeloma stage. The primary endpoint was progression-free survival in the intention-to-treat population. Patients who received at least one dose of study treatment were included in the safety population. This trial is registered at ClinicalTrials.gov, NCT03110562. The trial is ongoing, with 55 patients remaining on randomised therapy as of Feb 20, 2020. FINDINGS: Of 457 patients screened for eligibility, 402 were randomly allocated-195 (49%) to the selinexor, bortezomib, and dexamethasone group and 207 (51%) to the bortezomib and dexamethasone group-and the first dose of study medication was given between June 6, 2017, and Feb 5, 2019. Median follow-up durations were 13·2 months [IQR 6·2-19·8] for the selinexor, bortezomib, and dexamethasone group and 16·5 months [9·4-19·8] for the bortezomib and dexamethasone group. Median progression-free survival was 13·93 months (95% CI 11·73-not evaluable) with selinexor, bortezomib, and dexamethasone and 9·46 months (8·11-10·78) with bortezomib and dexamethasone (hazard ratio 0·70 [95% CI 0·53-0·93], p=0·0075). The most frequent grade 3-4 adverse events were thrombocytopenia (77 [39%] of 195 patients in the selinexor, bortezomib, and dexamethasone group vs 35 [17%] of 204 in the bortezomib and dexamethasone group), fatigue (26 [13%] vs two [1%]), anaemia (31 [16%] vs 20 [10%]), and pneumonia (22 [11%] vs 22 [11%]). Peripheral neuropathy of grade 2 or above was less frequent with selinexor, bortezomib, and dexamethasone (41 [21%] patients) than with bortezomib and dexamethasone (70 [34%] patients; odds ratio 0·50 [95% CI 0·32-0·79], p=0·0013). 47 (24%) patients in the selinexor, bortezomib, and dexamethasone group and 62 (30%) in the bortezomib and dexamethasone group died. INTERPRETATION: A once-per-week regimen of selinexor, bortezomib, and dexamethasone is a novel, effective, and convenient treatment option for patients with multiple myeloma who have received one to three previous lines of therapy. FUNDING: Karyopharm Therapeutics.
- MeSH
- antitumorózní látky aplikace a dávkování škodlivé účinky MeSH
- bortezomib aplikace a dávkování škodlivé účinky MeSH
- dexamethason aplikace a dávkování škodlivé účinky MeSH
- doba přežití bez progrese choroby MeSH
- dospělí MeSH
- hydraziny aplikace a dávkování škodlivé účinky MeSH
- Kaplanův-Meierův odhad MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mnohočetný myelom farmakoterapie MeSH
- protokoly antitumorózní kombinované chemoterapie aplikace a dávkování škodlivé účinky MeSH
- rozvrh dávkování léků MeSH
- senioři MeSH
- triazoly aplikace a dávkování škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH