Q92474850
Dotaz
Zobrazit nápovědu
The fluorinated bis-pyridinium oximes were designed and synthesized with the aim of increasing their nucleophilicity and potential to reactivate phosphorylated human recombinant acetylcholinesterase (AChE) and human purified plasmatic butyrylcholinesterase (BChE) in relation to chlorinated and non-halogenated oxime analogues. Compared to non-halogenated oximes, halogenated oximes showed lower pKa of the oxime group (fluorinated < chlorinated < non-halogenated) along with higher level of oximate anion formation at the physiological pH, and had a higher binding affinity of both AChE and BChE. The stability tests showed that the fluorinated oximes were stable in water, while in buffered environment di-fluorinated oximes were prone to rapid degradation, which was reflected in their lower reactivation ability. Mono-fluorinated oximes showed comparable reactivation to non-halogenated (except asoxime) and mono-chlorinated oximes in case of AChE inhibited by sarin, cyclosarin, VX, and tabun, but were less efficient than di-chlorinated ones. The same trend was observed in the reactivation of inhibited BChE. The advantage of halogen substituents in the stabilization of oxime in a position optimal for in-line nucleophilic attack were confirmed by extensive molecular modelling of pre-reactivation complexes between the analogue oximes and phosphorylated AChE and BChE. Halogen substitution was shown to provide oximes with additional beneficial properties, e.g., fluorinated oximes gained antioxidative capacity, and moreover, halogens themselves did not increase cytotoxicity of oximes. Finally, the in vivo administration of highly efficient reactivator and the most promising analogue, 3,5-di-chloro-bispyridinium oxime with trimethylene linker, provided significant protection of mice exposed to sarin and cyclosarin.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemie MeSH
- halogeny MeSH
- myši MeSH
- nervová bojová látka * farmakologie MeSH
- organofosforové sloučeniny MeSH
- oximy chemie MeSH
- reaktivátory cholinesterasy * chemie MeSH
- sarin chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The organophosphorus antidotes, so-called oximes, are able to restore the enzymatic function of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) via cleavage of organophosphate from the active site of the phosphylated enzyme. In this work, the charged pyridinium oximes containing thiocarboxamide moiety were designed, prepared and tested. Their stability and pKa properties were found to be analogous to parent carboxamides (K027, K048 and K203). The inhibitory ability of thiocarboxamides was found in low μM levels for AChE and high μM levels for BChE. Their reactivation properties were screened on human recombinant AChE and BChE inhibited by nerve agent surrogates and paraoxon. One thiocarboxamide was able to effectively restore function of NEMP- and NEDPA-AChE, whereas two thiocarboxamides were able to reactivate BChE inhibited by all tested organophosphates. These results were confirmed by reactivation kinetics, where thiocarboxamides were proved to be effective, but less potent reactivators if compared to carboxamides.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- molekulární struktura MeSH
- organofosfáty chemická syntéza chemie farmakologie MeSH
- oximy chemická syntéza chemie farmakologie MeSH
- pyridinové sloučeniny chemická syntéza chemie farmakologie MeSH
- sulfhydrylové sloučeniny chemická syntéza chemie farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Twelve novel analogs of STAT3 inhibitor BP-1-102 were designed and synthesised with the aim to modify hydrophobic fragments of the molecules that are important for interaction with the STAT3 SH2 domain. The cytotoxic activity of the reference and novel compounds was evaluated using several human and two mouse cancer cell lines. BP-1-102 and its two analogs emerged as effective cytotoxic agents and were further tested in additional six human and two murine cancer cell lines, in all of which they manifested the cytotoxic effect in a micromolar range. Reference compound S3I-201.1066 was found ineffective in all tested cell lines, in contrast to formerly published data. The ability of selected BP-1-102 analogs to induce apoptosis and inhibition of STAT3 receptor-mediated phosphorylation was confirmed. The structure-activity relationship confirmed a demand for two hydrophobic substituents, i.e. the pentafluorophenyl moiety and another spatially bulky moiety, for effective cytotoxic activity and STAT3 inhibition.
- MeSH
- apoptóza účinky léků MeSH
- fosforylace účinky léků MeSH
- hydrofobní a hydrofilní interakce MeSH
- kultivované buňky MeSH
- kyseliny aminosalicylové chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- molekulární struktura MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- racionální návrh léčiv * MeSH
- sulfonamidy chemická syntéza chemie farmakologie MeSH
- transkripční faktor STAT3 antagonisté a inhibitory metabolismus MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The series of symmetrical and unsymmetrical isoquinolinium-5-carbaldoximes was designed and prepared for cholinesterase reactivation purposes. The novel compounds were evaluated for intrinsic acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) inhibition, when the majority of novel compounds resulted with high inhibition of both enzymes and only weak inhibitors were selected for reactivation experiments on human AChE or BChE inhibited by sarin, VX, or paraoxon. The AChE reactivation for all used organophosphates was found negligible if compared to the reactivation ability of obidoxime. Importantly, two compounds were found to reactivate BChE inhibited by sarin or VX better to obidoxime at human attainable concentration. One compound resulted as better reactivator of NEMP (VX surrogate)-inhibited BChE than obidoxime. The in vitro results were further rationalized by molecular docking studies showing future directions on designing potent BChE reactivators.
- MeSH
- acetylcholinesterasa účinky léků MeSH
- butyrylcholinesterasa účinky léků MeSH
- cholinesterasové inhibitory farmakologie MeSH
- isochinoliny chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- reaktivátory cholinesterasy farmakologie MeSH
- simulace molekulového dockingu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The increasing risk of radiation exposure underlines the need for novel radioprotective agents. Hence, a series of novel 1-(2-hydroxyethyl)piperazine derivatives were designed and synthesized. Some of the compounds protected human cells against radiation-induced apoptosis and exhibited low cytotoxicity. Compared to the previous series of piperazine derivatives, compound 8 exhibited a radioprotective effect on cell survival in vitro and low toxicity in vivo. It also enhanced the survival of mice 30 days after whole-body irradiation (although this increase was not statistically significant). Taken together, our in vitro and in vivo data indicate that some of our compounds are valuable for further research as potential radioprotectors.
- MeSH
- analýza přežití MeSH
- ionizující záření MeSH
- lidé MeSH
- maximální tolerovaná dávka MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- piperaziny aplikace a dávkování škodlivé účinky chemie farmakologie MeSH
- radioprotektivní látky aplikace a dávkování škodlivé účinky chemie farmakologie MeSH
- viabilita buněk účinky léků účinky záření MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: In the last decade, the concept of uncharged reactivators potentially able to penetrate the CNS has been introduced as an alternative to the classic charged oxime reactivators. However, this concept brings with it several associated drawbacks such as higher lipophilicity, difficulty in administration, lower affinity to cholinesterases, and higher toxicity risk. OBJECTIVE: In this study, we compare data obtained for a set of five classic charged reactivators and a set of three recently published uncharged oximes supplemented by two novel ones. METHODS: This time, we used only in silico prediction and in vitro approaches. RESULTS: Our data showed that tested uncharged oximes have low affinity for cholinesterases, do not possess high reactivation potency, and certainly represent a greater toxicity risk due to higher lipophilicity. We assume that balanced physicochemical properties will be required for the successful treatment of OP poisoning. Nevertheless, the compound meeting such criteria and pinpointed in silico (K1280) failed in this particular case. CONCLUSION: From the presented data, it seems that the concept of uncharged reactivators will have to be modified, at least to improve the bioavailability and to satisfy requirements for in vivo administration.
- MeSH
- antidota chemická syntéza farmakologie toxicita MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemická syntéza farmakologie toxicita MeSH
- hematoencefalická bariéra účinky léků MeSH
- krysa rodu rattus MeSH
- myši MeSH
- organofosfáty toxicita MeSH
- otrava organofosfáty farmakoterapie MeSH
- oximy chemická syntéza farmakologie toxicita MeSH
- paraoxon toxicita MeSH
- počítačová simulace MeSH
- reaktivátory cholinesterasy chemická syntéza farmakologie toxicita MeSH
- sarin toxicita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The treatment of organophosphate (OP) poisoning consists of the administration of a parasympatholytic agent, an anticonvulsant and an acetylcholinesterase (AChE) reactivator. Since there is no broad AChE reactivator available, a post-treatment strategy currently exploits administration of different types of oximes depending on the exposure of OP. In this contribution, we summarize all the available data about AChE reactivator HLö-7 including its synthesis, physico-chemical properties, pharmacokinetic and pharmacodynamics profile, and its efficacy in vitro and in vitro.
- Klíčová slova
- Hlo-t,
- MeSH
- acetylcholinesterasa fyziologie chemie MeSH
- chemické bojové látky otrava MeSH
- cholinesterasové inhibitory farmakologie terapeutické užití MeSH
- LD50 MeSH
- lidé MeSH
- nervová bojová látka otrava MeSH
- organofosforové sloučeniny MeSH
- otrava organofosfáty * farmakoterapie MeSH
- oximy MeSH
- pesticidy otrava MeSH
- pyridinové sloučeniny * farmakokinetika farmakologie chemická syntéza chemie terapeutické užití MeSH
- reaktivátory cholinesterasy * farmakokinetika farmakologie chemická syntéza chemie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH