dSTORM Dotaz Zobrazit nápovědu
Current models of gene expression, which are based on single-molecule localization microscopy, acknowledge protein clustering and the formation of transcriptional condensates as a driving force of gene expression. However, these models largely omit the role of nuclear lipids and amongst them nuclear phosphatidylinositol phosphates (PIPs) in particular. Moreover, the precise distribution of nuclear PIPs in the functional sub-nuclear domains remains elusive. The direct stochastic optical reconstruction microscopy (dSTORM) provides an unprecedented resolution in biological imaging. Therefore, its use for imaging in the densely crowded cell nucleus is desired but also challenging. Here we present a dual-color dSTORM imaging and image analysis of nuclear PI(4,5)P2, PI(3,4)P2 and PI(4)P distribution while preserving the context of nuclear architecture. In the nucleoplasm, PI(4,5)P2 and PI(3,4)P2 co-pattern in close proximity with the subset of RNA polymerase II foci. PI(4,5)P2 is surrounded by fibrillarin in the nucleoli and all three PIPs are dispersed within the matrix formed by the nuclear speckle protein SON. PI(4,5)P2 is the most abundant nuclear PIP, while PI(4)P is a precursor for the biosynthesis of PI(4,5)P2 and PI(3,4)P2. Therefore, our data are relevant for the understanding the roles of nuclear PIPs and provide further evidence for the model in which nuclear PIPs represent a localization signal for the formation of lipo-ribonucleoprotein hubs in the nucleus. The discussed experimental pipeline is applicable for further functional studies on the role of other nuclear PIPs in the regulation of gene expression and beyond.
- MeSH
- buněčné jadérko metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- lidé MeSH
- mikroskopie MeSH
- nádorové buněčné linie MeSH
- RNA-polymerasa II metabolismus MeSH
- vedlejší histokompatibilní antigeny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Data segmentation and object rendering is required for localization super-resolution microscopy, fluorescent photoactivation localization microscopy (FPALM), and direct stochastic optical reconstruction microscopy (dSTORM). We developed and validated methods for segmenting objects based on Delaunay triangulation in 3D space, followed by facet culling. We applied them to visualize mitochondrial nucleoids, which confine DNA in complexes with mitochondrial (mt) transcription factor A (TFAM) and gene expression machinery proteins, such as mt single-stranded-DNA-binding protein (mtSSB). Eos2-conjugated TFAM visualized nucleoids in HepG2 cells, which was compared with dSTORM 3D-immunocytochemistry of TFAM, mtSSB, or DNA. The localized fluorophores of FPALM/dSTORM data were segmented using Delaunay triangulation into polyhedron models and by principal component analysis (PCA) into general PCA ellipsoids. The PCA ellipsoids were normalized to the smoothed volume of polyhedrons or by the net unsmoothed Delaunay volume and remodeled into rotational ellipsoids to obtain models, termed DVRE. The most frequent size of ellipsoid nucleoid model imaged via TFAM was 35 × 45 × 95 nm; or 35 × 45 × 75 nm for mtDNA cores; and 25 × 45 × 100 nm for nucleoids imaged via mtSSB. Nucleoids encompassed different point density and wide size ranges, speculatively due to different activity stemming from different TFAM/mtDNA stoichiometry/density. Considering twofold lower axial vs. lateral resolution, only bulky DVRE models with an aspect ratio >3 and tilted toward the xy-plane were considered as two proximal nucleoids, suspicious occurring after division following mtDNA replication. The existence of proximal nucleoids in mtDNA-dSTORM 3D images of mtDNA "doubling"-supported possible direct observations of mt nucleoid division after mtDNA replication.
- MeSH
- algoritmy * MeSH
- analýza hlavních komponent * MeSH
- buňky Hep G2 MeSH
- DNA vazebné proteiny metabolismus MeSH
- fluorescenční mikroskopie * MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- mitochondriální DNA chemie metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- molekulární modely MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic β-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-β plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.
- MeSH
- beta-buňky cytologie metabolismus MeSH
- buňky Hep G2 MeSH
- DNA vazebné proteiny metabolismus MeSH
- fluorescenční mikroskopie přístrojové vybavení MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mitochondriální DNA chemie metabolismus MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- potkani Wistar MeSH
- zobrazování trojrozměrné metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Signaling by the human C-type lectin-like receptor, natural killer (NK) cell inhibitory receptor NKR-P1, has a critical role in many immune-related diseases and cancer. C-type lectin-like receptors have weak affinities to their ligands; therefore, setting up a comprehensive model of NKR-P1-LLT1 interactions that considers the natural state of the receptor on the cell surface is necessary to understand its functions. Here we report the crystal structures of the NKR-P1 and NKR-P1:LLT1 complexes, which provides evidence that NKR-P1 forms homodimers in an unexpected arrangement to enable LLT1 binding in two modes, bridging two LLT1 molecules. These interaction clusters are suggestive of an inhibitory immune synapse. By observing the formation of these clusters in solution using SEC-SAXS analysis, by dSTORM super-resolution microscopy on the cell surface, and by following their role in receptor signaling with freshly isolated NK cells, we show that only the ligation of both LLT1 binding interfaces leads to effective NKR-P1 inhibitory signaling. In summary, our findings collectively support a model of NKR-P1:LLT1 clustering, which allows the interacting proteins to overcome weak ligand-receptor affinity and to trigger signal transduction upon cellular contact in the immune synapse.
- MeSH
- antigeny povrchové MeSH
- buňky NK * MeSH
- difrakce rentgenového záření MeSH
- lektinové receptory NK-buněk - podrodina B MeSH
- lektiny typu C MeSH
- lidé MeSH
- ligandy MeSH
- maloúhlový rozptyl MeSH
- receptory buněčného povrchu * MeSH
- shluková analýza MeSH
- synapse MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Previously, a number of ~ 1.4 of mitochondrial DNA (mtDNA) molecules in a single nucleoid was reported, which would reflect a minimum nucleoid division. We applied 3D-double-color direct stochastic optical reconstruction microscopy (dSTORM), i.e. nanoscopy with ~ 25-40 nm x,y-resolution, together with our novel method of Delaunay segmentation of 3D data to identify unbiased 3D-overlaps. Noncoding D-loops were recognized in HeLa cells by mtDNA fluorescence in situ hybridization (mtFISH) 7S-DNA 250-bp probe, containing biotin, visualized by anti-biotin/Cy3B-conjugated antibodies. Other mtFISH probes with biotin or Alexa Fluor 647 (A647) against ATP6-COX3 gene overlaps (1,100 bp) were also used. Nucleoids were imaged by anti-DNA/(A647-)-Cy3B-conjugated antibodies. Resulting histograms counting mtFISH-loci/nucleoid overlaps demonstrated that 45% to 70% of visualized nucleoids contained two or more D-loops or ATP6-COX3-loci, indicating two or more mtDNA molecules per nucleoid. With increasing number of mtDNA per nucleoid, diameters were larger and their distribution histograms peaked at ~ 300 nm. A wide nucleoid diameter distribution was obtained also using 2D-STED for their imaging by anti-DNA/A647. At unchanged mtDNA copy number in osteosarcoma 143B cells, TFAM expression increased nucleoid spatial density 1.67-fold, indicating expansion of existing mtDNA and its redistribution into more nucleoids upon the higher TFAM/mtDNA stoichiometry. Validation of nucleoid imaging was also done with two TFAM mutants unable to bend or dimerize, respectively, which reduced both copy number and nucleoid spatial density by 80%. We conclude that frequently more than one mtDNA molecule exists within a single nucleoid in HeLa cells and that mitochondrial nucleoids do exist in a non-uniform size range.
Hypoxia causes mitochondrial cristae widening, enabled by the ~20% degradation of Mic60/mitofilin, with concomitant clustering of the MICOS complex, reflecting the widening of crista junctions (outlets) (Plecitá-Hlavatá et al. FASEB J., 2016 30:1941-1957). Attempting to accelerate metabolism by the addition of membrane-permeant dimethyl-2-oxoglutarate (dm2OG) to HepG2 cells pre-adapted to hypoxia, we found cristae narrowing by transmission electron microscopy. Glycolytic HepG2 cells, which downregulate hypoxic respiration, instantly increased respiration with dm2OG. Changes in intracristal space (ICS) morphology were also revealed by 3D super-resolution microscopy using Eos-conjugated ICS-located lactamase-β. Cristae topology was resolved in detail by focused-ion beam/scanning electron microscopy (FIB/SEM). The spatial relocations of key cristae-shaping proteins were indicated by immunocytochemical stochastic 3D super-resolution microscopy (dSTORM), while analyzing inter-antibody-distance histograms: i) ATP-synthase dimers exhibited a higher fraction of shorter inter-distances between bound F1-α primary Alexa-Fluor-647-conjugated antibodies, indicating cristae narrowing. ii) Mic60/mitofilin clusters (established upon hypoxia) decayed, restoring isotropic random Mic60/mitofilin distribution (a signature of normoxia). iii) outer membrane SAMM50 formed more focused clusters. Less abundant fractions of higher ATP-synthase oligomers of hypoxic samples on blue-native electrophoresis became more abundant fractions at the high dm2OG load and at normoxia. This indicates more labile ATP-synthase dimeric rows established at crista rims upon hypoxia, strengthened at normoxia or dm2OG-substrate load. Hypothetically, the increased Krebs substrate load stimulates the cross-linking/strengthening of rows of ATP-synthase dimers at the crista rims, making them sharper. Crista narrowing ensures a more efficient coupling of proton pumping to ATP synthesis. We demonstrated that cristae morphology changes even within minutes.
- MeSH
- buněčné dýchání MeSH
- buňky Hep G2 MeSH
- dimerizace MeSH
- hypoxie MeSH
- kyseliny ketoglutarové farmakologie MeSH
- lidé MeSH
- mitochondriální membrány účinky léků ultrastruktura MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondriální protonové ATPasy metabolismus MeSH
- mitochondrie ultrastruktura MeSH
- transmisní elektronová mikroskopie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH