oocyte competence
Dotaz
Zobrazit nápovědu
OBJECTIVE: To analyze oocyte competence in gonadotropin-releasing hormone agonist (GnRHa) stimulation cycles with regard to maturity, fertilization and blastocyst rate, as well as clinical outcome (pregnancy and live-birth rate), in relation to follicular volume, measured by three-dimensional transvaginal sonography (3D-TVS), and follicular fluid composition. METHODS: This was a prospective single-center study conducted between June 2012 and June 2014, including 118 ovum pick-ups with subsequent embryo transfer. Ovarian stimulation was performed using the GnRHa long protocol. Of 1493 follicles aspirated individually, follicular volume was evaluated successfully in 1236 using automated 3D-TVS during oocyte retrieval. Oocyte maturity and blastocyst development were tracked according to follicular volume. Intrafollicular concentrations of estradiol, testosterone, progesterone, luteinizing hormone, follicle-stimulating hormone and granulocyte-colony stimulating factor were quantified by immunoassay. Clinical outcome, in terms of implantation rate, (clinical) pregnancy rate, miscarriage and live-birth rate (LBR), was evaluated. RESULTS: Follicles were categorized, according to their volume, into three arbitrary groups, which included 196 small (8-12 mm/0.3-0.9 mL), 772 medium (13-23 mm/1-6 mL) and 268 large (≥ 24 mm/> 6 mL) follicles. Although oocyte recovery rate was significantly lower in small follicles compared with medium and large ones (63.8% vs 76.6% and 81.3%, respectively; P < 0.001), similar fertilization rates (85.1% vs 75.3% and 81.4%, respectively) and blastocyst rates (40.5% vs 40.6% and 37.2%, respectively) per mature metaphase II oocyte were observed. A trend towards higher LBR after transfer of blastocysts derived from small (< 1 mL) follicles compared with medium (1-6 mL) or large (> 6 mL) follicles (54.5% vs 42.0%, and 41.7%, respectively) was observed. No predictive value of follicular fluid biomarkers was identified. CONCLUSIONS: Our data indicate that the optimal follicular volume for a high yield of good quality blastocysts with good potential to lead to a live birth is 13-23 mm/1-6 mL. However, oocytes derived from small follicles (8-12 mm/0.3-0.9 mL) still have the capacity for normal development and subsequent delivery of healthy children, suggesting that aspiration of these follicles should be encouraged as this would increase the total number of blastocysts retrieved per stimulation. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
- MeSH
- blastocysta fyziologie MeSH
- dospělí MeSH
- folikuly stimulující hormon terapeutické užití MeSH
- hormon uvolňující gonadotropiny antagonisté a inhibitory MeSH
- indukce ovulace * MeSH
- lidé MeSH
- mladý dospělý MeSH
- narození živého dítěte MeSH
- novorozenec MeSH
- odběr oocytu metody MeSH
- oocyty fyziologie MeSH
- ovariální folikul fyziologie MeSH
- porodnost MeSH
- přenos embrya * metody MeSH
- prospektivní studie MeSH
- samovolný potrat epidemiologie MeSH
- těhotenství MeSH
- úhrn těhotenství na počet žen v reprodukčním věku MeSH
- výsledek těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The fusion of sperm and oocytes determines the fertilization competence and subsequent development of embryos, which, in turn, can be affected by various proteins and DNA methylation. However, several factors in this whole regulation process remain unknown, especially in yaks. Here, we report that fibroblast growth factor 10 (FGF10) is an important growth factor that can enhance the maturation rate of yak oocytes and the motility of frozen spermatozoa. Subsequent blastocyst quality was also improved by increasing the total cell number and level of pregnancy-associated protein in blastocysts. These effects were significantly high in the group that received the 5 ng/ml FGF10 treatment, during both in vitro maturation (IVM) and capacitation. Our data show that the effects of FGF10 were dose-dependent at vital steps of embryogenesis in vitro. Furthermore, quantitative polymerase chain reaction, western blot analysis, and immunofluorescence demonstrated that the levels of CD9, CD81, DNMT1, and DNMT3B in both mature cumulus-oocyte complexes and capacitated sperms were regulated by FGF10, which was also highly expressed in the group treated with 5 ng/ml FGF10 during both IVM and capacitation. From our present study, we concluded that FGF10 promotes yak oocyte fertilization competence and subsequent blastocyst quality, and could also regulate CD9, CD81, DNMT1, and DNMT3B to optimize sperm-oocyte interactions and DNA methylation during fertilization.
- MeSH
- antigeny CD81 genetika metabolismus MeSH
- antigeny CD9 genetika metabolismus MeSH
- blastocysta účinky léků fyziologie MeSH
- DNA-(cytosin-5-)methyltransferasa genetika metabolismus MeSH
- DNA-(cytosin-5)-methyltransferasa 1 genetika metabolismus MeSH
- embryonální vývoj účinky léků genetika fyziologie MeSH
- fertilizace in vitro veterinární MeSH
- fertilizace účinky léků genetika fyziologie MeSH
- fibroblastový růstový faktor 10 aplikace a dávkování fyziologie MeSH
- IVM techniky veterinární MeSH
- messenger RNA genetika metabolismus MeSH
- oocyty účinky léků fyziologie MeSH
- skot embryologie genetika fyziologie MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- skot embryologie genetika fyziologie MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Successful reproduction requires an oocyte competent to sustain early embryo development. By the end of oogenesis, the oocyte has entered a transcriptionally silenced state, the mechanisms and significance of which remain poorly understood. Histone H3.3, a histone H3 variant, has unique cell cycle-independent functions in chromatin structure and gene expression. Here, we have characterised the H3.3 chaperone Hira/Cabin1/Ubn1 complex, showing that loss of function of any of these subunits causes early embryogenesis failure in mouse. Transcriptome and nascent RNA analyses revealed that transcription is aberrantly silenced in mutant oocytes. Histone marks, including H3K4me3 and H3K9me3, are reduced and chromatin accessibility is impaired in Hira/Cabin1 mutants. Misregulated genes in mutant oocytes include Zscan4d, a two-cell specific gene involved in zygote genome activation. Overexpression of Zscan4 in the oocyte partially recapitulates the phenotypes of Hira mutants and Zscan4 knockdown in Cabin1 mutant oocytes partially restored their developmental potential, illustrating that temporal and spatial expression of Zscan4 is fine-tuned at the oocyte-to-embryo transition. Thus, the H3.3 chaperone Hira complex has a maternal effect function in oocyte developmental competence and embryogenesis, through modulating chromatin condensation and transcriptional quiescence.
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- chromatin metabolismus MeSH
- embryonální vývoj genetika MeSH
- genový knockdown MeSH
- histonové chaperony genetika metabolismus MeSH
- histony metabolismus MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- oocyty růst a vývoj metabolismus MeSH
- oogeneze genetika MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- signální transdukce genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- zygota metabolismus MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
This study was designed to specify chromatin and mitochondrial patterns in bovine oocytes with different meiotic competence in relation to maturation progress, resumption of meiosis, MII onset and completion of maturation. Oocytes with greater or lesser meiotic competence, recovered separately from medium (MF) and small follicles (SF), were categorized according to morphology. Four oocyte categories, healthy and light-atretic MF and healthy and light-atretic SF oocytes were matured and collected at 0, 3, 7, 16 and 24 h of maturation. Specific differences in terms of chromatin and mitochondrial patterns were found among the maturing oocyte categories. Resumption of meiosis was accelerated in light-atretic oocytes, as compared with healthy oocytes, regardless of their meiotic competence. More competent oocytes activated mitochondria twice during maturation, before resumption of meiosis and before completion of maturation, while less competent oocytes did it only once, before completion of maturation. Changes in mitochondrial activity differed in light-atretic compared with healthy in both more and less competent oocytes. Healthy meiotically more competent oocytes formed clusters and produced ATP for the whole time of maturation until its completion, while light-atretic more competent oocytes and healthy less competent oocytes reduced these activities earlier, at MII onset. Contrary to these oocyte categories, light-atretic less competent oocytes increased cluster formation significantly before resumption of meiosis. It can be concluded that bovine oocytes with different meiotic competence and health differed in the kinetics of mitochondrial patterns during maturation.
- MeSH
- chromatin ultrastruktura MeSH
- IVM techniky * MeSH
- konfokální mikroskopie MeSH
- meióza * MeSH
- mitochondrie ultrastruktura MeSH
- oocyty růst a vývoj ultrastruktura MeSH
- skot anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- skot anatomie a histologie MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In recent years, molecular techniques have brought about new solutions that focus on the developmental capacity of female oocytes and reproductive performance in the mammalian species. The developmental potency is the ability of oocytes to reach the MII stage following the long stages of folliculo- and oogenesis. The main proteins involved in this process belong to the connexin (Cx) family, which are responsible for the formation of gap junction (GJC) connections between the female gamete and surrounding somatic cells. The Cx are involved in bi-directional transport of small molecules and are therefore responsible for correct oocyte-somatic cell nutrition, proliferation, and differentiation. However, the application of certain molecular techniques often leads to destabilization or destruction of the materials of interest, such as cells or whole tissues. Therefore, the applications of microfluidic methods, which are non-invasive and quantitative, give new opportunities to further this area of biomedical research. Microfluidic research is based on real-time experiments that allow for control and/ or observation of the results during each step. The purpose of this review is to present both positive and negative aspects of molecular-microfluidic methods while describing the role of connexins in oocyte developmental capacity.
- MeSH
- biologický transport MeSH
- konexiny analýza genetika fyziologie MeSH
- kultivační média MeSH
- kultivované buňky MeSH
- kumulární buňky chemie fyziologie MeSH
- laboratoř na čipu MeSH
- messenger RNA analýza MeSH
- mezerový spoj MeSH
- mezibuněčná komunikace MeSH
- mikrofluidní analytické techniky * MeSH
- molekulární biologie metody MeSH
- oocyty chemie fyziologie MeSH
- oogeneze * MeSH
- savci fyziologie MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The main goal of this study was to characterize the expression patterns of genes which play a role in mitochondrial DNA biogenesis and metabolism during the maturation of bovine oocytes with different meiotic competence and health. Meiotically more and less competent oocytes were obtained separately either from medium (MF) or small (SF) follicles and categorized according to oocyte morphology into healthy and light-atretic. The four oocyte categories were matured and collected after 0, 3, 7, 16 and 24 h of maturation. Either total RNA or poly(A) RNA were extracted from oocytes and the expression of selected mitochondrial translational factors (TFAM, TFB1M, and TFB2M), MATER, and Luciferase as external standard was assessed using a real-time RT-PCR. The level of TFAM, TFB1M and MATER poly(A) RNA transcripts significantly decreased during maturation in both healthy and light-atretic MF and SF oocytes. On the other hand, the level of TFB2M poly(A) increased during maturation in healthy and light-atretic SF oocytes, in contrast to MF oocytes. The abundance of TFAM total RNA was significantly higher after maturation than that before maturation in all oocyte categories. However, no differences in TFB1M and TFB2M total RNA were found in any oocyte categories. It can be concluded that the gene expression patterns differ in maturing bovine oocytes in dependence on their meiotic competence and health. The TFAM and TFB1M poly(A) RNAs are actively deadenylated at different meiotic stages but TFB2M poly(A) RNA remains elevated in light-atretic less competent oocytes until the completion of meiosis.
- MeSH
- IVM techniky veterinární MeSH
- mitochondriální DNA biosyntéza MeSH
- mitochondriální geny * MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- oocyty metabolismus MeSH
- skot fyziologie MeSH
- zvířata MeSH
- Check Tag
- skot fyziologie MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The processes of oocyte growth, acquisition of meiotic competence and meiotic maturation are regulated by a large number of molecules. One of them could be calcineurin consisting of catalytic subunit A (Aα, Aβ, Aγ isoforms) and regulatory subunit B (B1, B2 isoforms). Calcineurin is involved in the meiotic maturation of oocytes in invertebrates or in lower vertebrates. In the mammalian oocytes, the possible role of calcineurin in the regulation of oocyte meiosis has not been clarified to date. In this study, to investigate the role of calcineurin during porcine oocyte growth, acquisition of meiotic competence and meiotic maturation, we analysed the expression and localisation of calcineurin subunits and the mRNA expression of calcineurin isoforms. Calcineurin was expressed in growing porcine oocytes, in fully grown oocytes and during their in vitro meiotic maturation. We found both subunits of calcineurin. Calcineurin A and calcineurin B were localised mainly in the cortex in all porcine oocytes. The changes in the intracellular localisation of separate calcineurin subunits during meiotic maturation were determined. We detected mRNA for calcineurin isoforms Aβ, Aγ, B2 in oocytes and mRNA for calcineurin isoforms Aβ, Aγ, B1, and B2 in cumular cells. To our knowledge, this is the first confirmation of calcineurin presence in porcine oocytes.
- MeSH
- IVM techniky veterinární MeSH
- kalcineurin genetika metabolismus MeSH
- meióza fyziologie MeSH
- messenger RNA genetika metabolismus MeSH
- oocyty fyziologie MeSH
- prasata * MeSH
- regulace genové exprese fyziologie MeSH
- transport proteinů fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Gametogenesis and fertilization are the key events in sexual reproduction. In the female, meiosis results in a large oocyte that is competent for fertilization and fundamental for the success of early embryonic development. Progression through meiosis is monitored by fine regulatory mechanisms. In this review, we focus on one of the most well-known regulatory elements, the E3 ligase APC/C, which mediates proteolytic degradation of a number of important substrates via the ubiquitin proteasome pathway (UPP). The UPP also indirectly regulates protein synthesis by affecting proteins involved in RNA metabolism, a process that is paramount for the transcriptionally silent oocyte. During the past few years, more evidence has accumulated to suggest that the UPP has an important role in zona pellucida penetration and gamete fusion in mammals. This review focuses on the function of the UPP in regulating oocyte meiotic maturation in mammals, with special attention to its role in chromosome segregation and polar body extrusion, its role in the acquisition of meiotic/developmental competence and recent advances in our understanding of the UPP role in fertilization.
- MeSH
- interakce spermie a vajíčka fyziologie MeSH
- lidé MeSH
- meióza fyziologie MeSH
- oocyty cytologie metabolismus MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- proteolýza MeSH
- RNA MeSH
- savci MeSH
- ubikvitinligasy metabolismus MeSH
- ubikvitinované proteiny metabolismus MeSH
- zona pellucida metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Polyspermia is an adverse phenomenon during mammalian fertilization when more than one sperm fuses with a single oocyte. The egg cell is prepared to prevent polyspermia by, among other ways, producing cortical granules (CGs), which are specialized intracellular structures containing enzymes that aim to harden the zona pellucida and block the fusion of subsequent sperm. This work focused on exploring the expression profile of genes that may be associated with cortical reactions, and evaluated the distribution of CGs in immature oocytes and the peripheral density of CGs in mature oocytes. Oocytes were isolated and then processed for in vitro maturation (IVM). Transcriptomic analysis of genes belonging to five ontological groups has been conducted. Six genes showed increased expression after IVM (ARHGEF2, MAP1B, CXCL12, FN1, DAB2, and SOX9), while the majority of genes decreased expression after IVM. Using CG distribution analysis in immature oocytes, movement towards the cortical zone of the oocyte during meiotic competence acquisition was observed. CGs peripheral density decreased with the rise in meiotic competence during the IVM process. The current results reveal important new insights into the in vitro maturation of oocytes. Our results may serve as a basis for further studies to investigate the cortical reaction of oocytes.
- MeSH
- buněčná diferenciace * MeSH
- cytoplazmatická granula metabolismus MeSH
- IVM techniky metody MeSH
- kultivované buňky MeSH
- oocyty cytologie metabolismus MeSH
- prasata MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The aim of this work was to assess the FSH-stimulated expression of epidermal growth factor (EGF)-like peptides in cultured cumulus-oocyte complexes (COCs) and to find out the effect of the peptides on cumulus expansion, oocyte maturation, and acquisition of developmental competence in vitro. FSH promptly stimulated expression of amphiregulin (AREG) and epiregulin (EREG), but not betacellulin (BTC) in the cultured COCs. Expression of AREG and EREG reached maximum at 2 or 4 h after FSH addition respectively. FSH also significantly stimulated expression of expansion-related genes (PTGS2, TNFAIP6, and HAS2) in the COCs at 4 and 8 h of culture, with a significant decrease at 20 h of culture. Both AREG and EREG also increased expression of the expansion-related genes; however, the relative abundance of mRNA for each gene was much lower than in the FSH-stimulated COCs. In contrast to FSH, AREG and EREG neither stimulated expression of CYP11A1 in the COCs nor an increase in progesterone production by cumulus cells. AREG and EREG stimulated maturation of oocytes and expansion of cumulus cells, although the percentage of oocytes that had reached metaphase II was significantly lower when compared to FSH-induced maturation. Nevertheless, significantly more oocytes stimulated with AREG and/or EREG developed to blastocyst stage after parthenogenetic activation when compared to oocytes stimulated with FSH alone or combinations of FSH/LH or pregnant mares serum gonadotrophin/human chorionic gonadotrophin. We conclude that EGF-like peptides do not mimic all effects of FSH on the cultured COCs; nevertheless, they yield oocytes with superior developmental competence.
- MeSH
- buněčná diferenciace účinky léků genetika MeSH
- embryonální vývoj účinky léků genetika MeSH
- epidermální růstový faktor chemie farmakologie MeSH
- folikuly stimulující hormon farmakologie MeSH
- gonadotropiny farmakologie MeSH
- kultivace embrya MeSH
- kultivované buňky MeSH
- kumulární buňky účinky léků metabolismus fyziologie MeSH
- oocyty účinky léků metabolismus fyziologie MeSH
- oogeneze účinky léků genetika MeSH
- partenogeneze účinky léků genetika fyziologie MeSH
- peptidové fragmenty chemie farmakologie MeSH
- prasata genetika metabolismus fyziologie MeSH
- proliferace buněk účinky léků MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH