Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure.
- MeSH
- Species Specificity MeSH
- Ecosystem MeSH
- Host Specificity MeSH
- Hymenoptera classification physiology MeSH
- Host-Parasite Interactions * MeSH
- Quantitative Trait, Heritable * MeSH
- Aphids classification physiology MeSH
- Population Dynamics MeSH
- Food Chain MeSH
- Plants parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
Understanding interactions between herbivores and parasitoids is essential for successful biodiversity protection and monitoring and for biological pest control. Morphological identifications employ insect rearing and are complicated by insects' high diversity and crypsis. DNA barcoding has been successfully used in studies of host-parasitoid interactions as it can substantially increase the recovered real host-parasitoid diversity distorted by overlooked species complexes, or by species with slight morphological differences. However, this approach does not allow the simultaneous detection and identification of host(s) and parasitoid(s). Recently, high-throughput sequencing has shown high potential for surveying ecological communities and trophic interactions. Using mock samples comprising insect larvae and their parasitoids, we tested the potential of DNA metabarcoding for identifying individuals involved in host-parasitoid interactions to different taxonomic levels, and compared it to standard DNA barcoding and morphological approaches. For DNA metabarcoding, we targeted the standard barcoding marker cytochrome oxidase subunit I using highly degenerate primers, 2*300 bp sequencing on a MiSeq platform, and RTAX classification using paired-end reads. Additionally, using a large host-parasitoid dataset from a Central European floodplain forest, we assess the completeness and usability of a local reference library by confronting the number of Barcoding Index Numbers obtained by standard barcoding with the number of morphotypes. Overall, metabarcoding recovery was high, identifying 92.8% of the taxa present in mock samples, and identification success within individual taxonomic levels did not significantly differ among metabarcoding, standard barcoding, and morphology. Based on the current local reference library, 39.4% parasitoid and 90.7% host taxa were identified to the species level. DNA barcoding estimated higher parasitoid diversity than morphotyping, especially in groups with high level of crypsis. This study suggests the potential of metabarcoding for effectively recovering host-parasitoid diversity, together with more accurate identifications obtained from building reliable and comprehensive reference libraries, especially for parasitoids.
Previously, host-parasitoid links have been unveiled almost exclusively by time-intensive rearing, while molecular methods were used only in simple agricultural host-parasitoid systems in the form of species-specific primers. Here, we present a general method for the molecular detection of these links applied to a complex caterpillar-parasitoid food web from tropical rainforest of Papua New Guinea. We DNA barcoded hosts, parasitoids and their tissue remnants and matched the sequences to our extensive library of local species. We were thus able to match 87% of host sequences and 36% of parasitoid sequences to species and infer subfamily or family in almost all cases. Our analysis affirmed 93 hitherto unknown trophic links between 37 host species from a wide range of Lepidoptera families and 46 parasitoid species from Hymenoptera and Diptera by identifying DNA sequences for both the host and the parasitoid involved in the interaction. Molecular detection proved especially useful in cases where distinguishing host species in caterpillar stage was difficult morphologically, or when the caterpillar died during rearing. We have even detected a case of extreme parasitoid specialization in a pair of Choreutis species that do not differ in caterpillar morphology and ecology. Using the molecular approach outlined here leads to better understanding of parasitoid host specificity, opens new possibilities for rapid surveys of food web structure and allows inference of species associations not already anticipated.
- MeSH
- Diptera genetics MeSH
- DNA Primers genetics MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Hymenoptera genetics MeSH
- Host-Parasite Interactions genetics MeSH
- Larva parasitology MeSH
- Lepidoptera genetics parasitology MeSH
- Molecular Sequence Data MeSH
- Food Chain MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- DNA Barcoding, Taxonomic MeSH
- Tropical Climate MeSH
- Computational Biology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geographicals
- Papua New Guinea MeSH
In insect larvae, optimising food utilisation with respect to available meals and time is essential for achieving maximum adult body size, which is a relevant proxy of fitness. We studied the efficiency of food conversion, body size, mortality, and development time in a solitary idiobiont ectoparasitoid, Brachinus explodens (Coleoptera: Carabidae), reared in the laboratory on the pupae of another carabid genus, Amara. The efficiency of conversion index (ECI - ratio of ingested to assimilated food) was, on average, 54.1±1.1% (n=76), with a minimum of 26.9% and a maximum of 81.6%. The rate of increase in biomass gained (W(gained)) with biomass of the host was constant in females, but it decreased in males over the range of host body mass. Females, therefore, grew heavier from hosts of the same mass compared to males. Body length increased with the host mass and was correlated with W(gained) identically for both sexes. Mortality was unaffected by the host mass, but it significantly increased below 20°C. In contrast, the development time of the feeding phase of the larva increased with the host mass at 20.3 and 23.7°C, but it remained unaffected at 26.9°C and in all three temperatures considering pupal development. W(gained) increased with development time up to ca. 8 days of larval feeding at 23.7°C. To our knowledge, our data are the first on food utilisation in solitary idiobiont coleopteran ectoparasitoids, and they present the highest values of ECI in insects.
- MeSH
- Coleoptera growth & development metabolism parasitology MeSH
- Host-Parasite Interactions MeSH
- Larva growth & development metabolism parasitology MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Parasites and parasitoids control behaviors of their hosts. However, the origin of the behavior evoked by the parasitic organism has been rarely identified. It is also not known whether the manipulation is universal or host-specific. Polysphinctine wasps, koinobiont ectoparasitoids of several spider species that manipulate host web-spinning activity for their own protection during pupation, provide an ideal system to reveal the origin of the evoked behavior. Larva of Zatypota percontatoria performed species-specific manipulation of theridiid spiders, Neottiura bimaculata and Theridion varians, shortly before pupation. Parasitized N. bimaculata produced a dense web, whereas parasitized T. varians built a cupola-like structure. The larva pupated inside of either the dense web or the cupola-like structure. We discovered that unparasitized N. bimaculata produce an analogous dense web around their eggsacs and for themselves during winter, while T. varians construct an analogous 'cupola' only for overwintering. We induced analogous manipulation in unparasitized hosts by altering ambient conditions. We discovered that the behavior evoked by larvae in two hosts was functionally similar. The larva evoked protective behaviors that occur in unparasitized hosts only during specific life-history periods.
- MeSH
- Host-Parasite Interactions MeSH
- Larva parasitology physiology MeSH
- Spiders parasitology physiology MeSH
- Wasps pathogenicity MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Current knowledge about polysphinctine parasite wasps' interactions with their spider hosts is very fragmented and incomplete. This study presents the host specificity of Zatypota percontatoria (Müller) (Hymenoptera: Ichneumonidae) and its adaptation to varying host availability. Two years of field observations show that Z. percontatoria is a stenophagous parasitoid that parasitizes only five closely related web-building spiders of the family Theridiidae (Araneae). Within the Theridiidae it attacks only species belonging to a small group of species, here called the "Theridion" group. These hosts have a similar biology, but are available at different levels of abundance and at different sizes over the season. Laboratory experiments showed that this wasp species ignores linyphiid, araneid or dictynid spiders and accepts only theridiid spiders of the "Theridion" group. In the field study, wasp females preferred older juvenile and sub-adult female spider instars with intermediate body size. Only 5% of the parasitized spiders were males. Parasitism in the natural population of theridiid spiders was on average 1.3%. Parasitism was most frequent on two species, Theridion varians Hahn in 2007 and Neottiura bimaculata Linnaeus in 2008. The parasitization rate was positively correlated with spider abundance. The wasp responded adaptively to seasonal changes in host abundance and host body size and shifted host preference according to the availability of suitable hosts during, as well as between, seasons. In spring and summer the highest percentage of parasitism was on T. varians and in autumn it was on N. bimaculata.
- MeSH
- Host Specificity MeSH
- Oviposition MeSH
- Spiders parasitology MeSH
- Seasons MeSH
- Wasps physiology MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The processes maintaining the enormous diversity of herbivore-parasitoid food webs depend on parasitism rate and parasitoid host specificity. The two parameters have to be evaluated in concert to make conclusions about the importance of parasitoids as natural enemies and guide biological control. We document parasitism rate and host specificity in a highly diverse caterpillar-parasitoid food web encompassing 266 species of lepidopteran hosts and 172 species of hymenopteran or dipteran parasitoids from a lowland tropical forest in Papua New Guinea. We found that semi-concealed hosts (leaf rollers and leaf tiers) represented 84% of all caterpillars, suffered a higher parasitism rate than exposed caterpillars (12 vs. 5%) and their parasitoids were also more host specific. Semi-concealed hosts may therefore be generally more amenable to biological control by parasitoids than exposed ones. Parasitoid host specificity was highest in Braconidae, lower in Diptera: Tachinidae, and, unexpectedly, the lowest in Ichneumonidae. This result challenges the long-standing view of low host specificity in caterpillar-attacking Tachinidae and suggests higher suitability of Braconidae and lower suitability of Ichneumonidae for biological control of caterpillars. Semi-concealed hosts and their parasitoids are the largest, yet understudied component of caterpillar-parasitoid food webs. However, they still remain much closer in parasitism patterns to exposed hosts than to what literature reports on fully concealed leaf miners. Specifically, semi-concealed hosts keep an equally low share of idiobionts (2%) as exposed caterpillars.
- MeSH
- Diptera physiology MeSH
- Ecosystem MeSH
- Plant Physiological Phenomena MeSH
- Hymenoptera physiology MeSH
- Host-Parasite Interactions MeSH
- Larva parasitology MeSH
- Moths parasitology MeSH
- Food Chain * MeSH
- Biota * MeSH
- Feeding Behavior MeSH
- Tropical Climate MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geographicals
- Papua New Guinea MeSH
The number of parasitoids developed per host is one of the major factors that influences future adult body size and reproductive success. Here, we examined four external factors (host species, heritability, host population density, and presence of predators) that can affect the number of the gregarious parasitoid Anaphes flavipes (Förster, 1841) (Hymenoptera: Mymaridae) wasps developing in one host. The effect of host population density on the number of parasitoid offspring developed per host was confirmed, and for the first time, we also showed that the number of offspring per host is influenced by the presence of predators. Low host density and presence of predators increases the number of wasps developed in one host egg. However, a higher number of A. flavipes in one host reduces A. flavipes body size and hence its future individual fertility and fitness. Our results highlighted the importance of some external factors that distinctly affect the number of wasp offspring. Therefore, in this context, we suggest that in comparison to solitary parasitoids, the gregarious parasitoid A. flavipes can better respond to various external factors and can more flexibly change its population density.
- MeSH
- Coleoptera parasitology MeSH
- Fertility MeSH
- Host Specificity MeSH
- Population Density MeSH
- Host-Parasite Interactions * MeSH
- Reproduction MeSH
- Wasps growth & development MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Eukaryotes commonly host communities of heritable symbiotic bacteria, many of which are not essential for their hosts' survival and reproduction. There is laboratory evidence that these facultative symbionts can provide useful adaptations, such as increased resistance to natural enemies. However, we do not know how symbionts affect host fitness when the latter are subject to attack by a natural suite of parasites and pathogens. Here, we test whether two protective symbionts, Regiella insecticola and Hamiltonella defensa, increase the fitness of their host, the pea aphid (Acyrthosiphon pisum), under natural conditions. We placed experimental populations of two pea aphid lines, each with and without symbionts, in five wet meadow sites to expose them to a natural assembly of enemy species. The aphids were then retrieved and mortality from parasitoids, fungal pathogens and other causes assessed. We found that both Regiella and Hamiltonella reduce the proportion of aphids killed by the specific natural enemies against which they have been shown to protect in laboratory and cage experiments. However, this advantage was nullified (Hamiltonella) or reversed (Regiella) by an increase in mortality from other natural enemies and by the cost of carrying the symbiont. Symbionts therefore affect community structure by altering the relative success of different natural enemies. Our results show that protective symbionts are not necessarily advantageous to their hosts, and may even behave more like parasites than mutualists. Nevertheless, bacterial symbionts may play an important role in determining food web structure and dynamics.
- MeSH
- Enterobacteriaceae physiology MeSH
- Genetic Fitness MeSH
- Fungi physiology MeSH
- Host-Parasite Interactions MeSH
- Host-Pathogen Interactions * MeSH
- Aphids genetics microbiology parasitology physiology MeSH
- Wasps physiology MeSH
- Symbiosis * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the "selfish" immune cells send during infection to secure more energy at the expense of other tissues.