protein disulphide isomerase Dotaz Zobrazit nápovědu
Anterior Gradient-2 (AGR2) is a component of a pro-oncogenic signalling pathway that can promote p53 inhibition, metastatic cell migration, limb regeneration, and cancer drug-resistance. AGR2 is in the protein-disulphide isomerase superfamily containing a single cysteine (Cys-81) that forms covalent adducts with its client proteins. We have found that mutation of Cysteine-81 attenuates its biochemical activity in its sequence-specific peptide docking function, reduces binding to Reptin, and reduces its stability in cells. As such, we evaluated how chemical oxidation of its cysteine affects its biochemical properties. Recombinant AGR2 spontaneously forms covalent dimers in the absence of reductant whilst DTT promotes dimer to monomer conversion. Mutation of Cysteine-81 to alanine prevents peroxide catalysed dimerization of AGR2 in vitro, suggesting a reactive cysteine is central to covalent dimer formation. Both biochemical assays and ESI mass spectrometry were used to demonstrate that low levels of a chemical oxidant promote an intermolecular disulphide bond through formation of a labile sulfenic acid intermediate. However, higher levels of oxidant promote sulfinic or sulfonic acid formation thus preventing covalent dimerization of AGR2. These data together identify the single cysteine of AGR2 as an oxidant responsive moiety that regulates its propensity for oxidation and its monomeric-dimeric state. This has implications for redox regulation of the pro-oncogenic functions of AGR2 protein in cancer cells.
- MeSH
- chemorezistence genetika MeSH
- cystein genetika metabolismus MeSH
- disulfidy chemie metabolismus MeSH
- DNA-helikasy chemie genetika metabolismus MeSH
- hmotnostní spektrometrie MeSH
- kyseliny sulfenové metabolismus MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- multimerizace proteinu genetika MeSH
- mutace MeSH
- nádory chemie genetika patologie MeSH
- oxidace-redukce * MeSH
- proteiny chemie genetika metabolismus MeSH
- sekvence aminokyselin genetika MeSH
- signální transdukce MeSH
- transportní proteiny chemie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Francisella tularensis is a highly infectious facultative intracellular bacterium and aetiological agent of tularaemia. The conserved hypothetical lipoprotein with homology to thiol/disulphide oxidoreductase proteins (FtDsbA) is an essential virulence factor in F. tularensis. Its protein sequence has two different domains: the DsbA_Com1_like domain (DSBA), with the highly conserved catalytically active site CXXC and cis-proline residue; and the domain amino-terminal to FKBP-type peptidyl-prolyl isomerases (FKBP_N). To establish the role of both domains in tularaemia infection models, site-directed and deletion mutagenesis affecting the active site (AXXA), the cis-proline (P286T) and the FKBP_N domain (ΔFKBP_N) were performed. The generated mutations led to high attenuation with the ability to induce full or partial host protective immunity. Recombinant protein analysis revealed that the active site CXXC as well as the cis-proline residue and the FKBP_N domain are necessary for correct thiol/disulphide oxidoreductase activity. By contrast, only the DSBA domain (and not the FKBP_N domain) seems to be responsible for the in vitro chaperone activity of the FtDsbA protein.
- MeSH
- faktory virulence genetika metabolismus MeSH
- Francisella tularensis enzymologie genetika MeSH
- molekulární chaperony genetika metabolismus MeSH
- mutační analýza DNA MeSH
- mutageneze cílená MeSH
- mutantní proteiny genetika metabolismus MeSH
- proteindisulfidisomerasy genetika metabolismus MeSH
- sekvenční delece MeSH
- thioredoxiny genetika metabolismus MeSH
- virulence MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Proteins targeted to secretory pathway enter the endoplasmic reticulum where they undergo post-translational modification and subsequent quality control executed by exquisite catalysts of protein folding, protein disulphide isomerases (PDIs). These enzymes can often provide strict conformational protein folding solutions to highly cysteine-rich cargo as they facilitate disulphide rearrangement in the endoplasmic reticulum. Under conditions when PDI substrates are not isomerised properly, secreted proteins can accumulate in the endoplasmic reticulum leading to endoplasmic reticulum stress initiation with implications for human disease development. Anterior Gradient-2 (AGR2) is an endoplasmic reticulum-resident PDI superfamily member that has emerged as a dominant effector of basic biological properties in vertebrates including blastoderm formation and limb regeneration. AGR2 perturbation in mammals influences disease processes including cancer progression and drug resistance, asthma, and inflammatory bowel disease. This review will focus on the molecular characteristics, function, and regulation of AGR2, views on its emerging biological functions and misappropriation in disease, and prospects for therapeutic intervention into endoplasmic reticulum-resident protein folding pathways for improving the treatment of human disease.
- MeSH
- aminokyselinové motivy MeSH
- bronchiální astma metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádory genetika metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- proteindisulfidisomerasy metabolismus MeSH
- proteiny metabolismus MeSH
- regulace genové exprese u nádorů * MeSH
- sbalování proteinů MeSH
- techniky dvojhybridového systému MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- viabilita buněk MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Francisella tularensis the etiological agent of tularaemia is one of the most infectious human pathogen known. Our knowledge about its key virulence factors has increased recently but it still remains a lot to explore. One of the described essential virulence factors is membrane lipoprotein FTS_1067 (nomenclature of F. tularensis subsp. holarctica strain FSC200) with homology to the protein family of disulphide oxidoreductases DsbA. Lipoprotein consists of two different domains: the C-terminal DsbA_Com1-like domain (DSBA-like) and the N-terminal FKBP-type peptidyl-prolyl cis/trans isomerases (FKBP_N-like). To uncover the biological role of these domains, we created bacterial strain with deletion of the DSBA-like domain. This defect in gene coding for lipoprotein FTS_1067 led to high in vivo attenuation associated with the ability to induce host protective immunity. Analyses performed with the truncated recombinant protein showed that the absence of DSBA-like domain revealed the loss of thiol/disulphide oxidoreductase activity and, additionally, confirmed the role of the FKBP_N-like domain in the FTS_1067 oligomerization and chaperone-like function. Finally, we verified that only full-length form of FTS_1067 recombinant protein possesses the isomerase activity. Based on our results, we proposed that for the correct FTS_1067 protein function both domains are needed.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- faktory virulence genetika metabolismus MeSH
- Francisella tularensis genetika růst a vývoj patogenita MeSH
- lipoproteiny genetika metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- modely nemocí na zvířatech MeSH
- mutantní proteiny genetika metabolismus MeSH
- myši inbrední BALB C MeSH
- sekvenční delece MeSH
- tularemie mikrobiologie patologie MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In the past decades, highly related members of the protein disulphide isomerase family, anterior gradient protein AGR2 and AGR3, attracted researchers' attention due to their putative involvement in developmental processes and carcinogenesis. While AGR2 has been widely demonstrated as a metastasis-related protein whose elevated expression predicts worse patient outcome, little is known about AGR3's role in tumour biology. Thus, we aim to confront the issue of AGR3 function in physiology and pathology in the following review by comparing this protein with the better-described homologue AGR2. Relying on available data and in silico analyses, we show that AGR proteins are co-expressed or uncoupled in context-dependent manners in diverse carcinomas and healthy tissues. Further, we discuss plausible roles of both proteins in tumour-associated processes such as differentiation, proliferation, migration, invasion and metastasis. This work brings new hints and stimulates further thoughts on hitherto unresolved conundrum of anterior gradient protein function.
- MeSH
- buněčná diferenciace MeSH
- invazivní růst nádoru MeSH
- lidé MeSH
- nádorové proteiny metabolismus MeSH
- nádory metabolismus patologie MeSH
- počítačová simulace MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- proteiny metabolismus MeSH
- transportní proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Clinical studies have defined the core 'genetic blueprint' of a cancer cell, but this information does not necessarily predict the cancer phenotype. Signalling hubs that mediate such phenotype have been identified largely using OMICS platforms that measure dynamic molecular changes within the cancer cell landscape. The pro-oncogenic protein anterior gradient 2 (AGR2) is a case in point; AGR2 has been shown using a range of expression platforms to be involved in asthma, inflammatory bowel disease, cell transformation, cancer drug resistance and metastatic growth. AGR2 protein is also highly overexpressed in a diverse range of human cancers and can be secreted and detected in extracellular fluids, thus representing a compelling pro-oncogenic signalling intermediate in human cancer. AGR2 belongs to the protein disulphide isomerase family with all the key features of an endoplasmic reticulum-resident protein-this gives clues into how it might function as an oncoprotein through the regulation of protein folding, maturation and secretion that can drive metastatic cell growth. In this review, we will describe the known aspects of AGR2 molecular biology, including gene structure and regulation, emerging protein interaction networks and how its subcellular localization mediates its biological functions. We will finally review the cases of AGR2 expression in human cancers, the pathophysiological consequences of AGR2 overexpression, its potential role as a tumour biomarker that predicts the response to therapy and how the AGR2 pathway might form the basis for drug discovery programmes aimed at targeting protein folding/maturation pathways that mediate secretion and metastasis.
- MeSH
- aminokyselinové motivy MeSH
- androgeny metabolismus MeSH
- chemorezistence MeSH
- endoplazmatické retikulum * metabolismus MeSH
- estrogeny metabolismus MeSH
- extracelulární tekutina metabolismus MeSH
- lidé MeSH
- mapy interakcí proteinů MeSH
- multigenová rodina MeSH
- nádorové biomarkery genetika metabolismus MeSH
- nádorové proteiny genetika metabolismus MeSH
- nádory MeSH
- promotorové oblasti (genetika) MeSH
- proteiny * genetika metabolismus MeSH
- regulace genové exprese u nádorů * MeSH
- tamoxifen farmakologie MeSH
- transportní proteiny genetika metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH