species recognition
Dotaz
Zobrazit nápovědu
Recognition is considered a critical basis for discriminatory behaviours in animals. Theoretically, recognition and discrimination of parasitic chicks are not predicted to evolve in hosts of brood parasitic birds that evict nest-mates. Yet, an earlier study showed that host reed warblers (Acrocephalus scirpaceus) of an evicting parasite, the common cuckoo (Cuculus canorus), can avoid the costs of prolonged care for unrelated young by deserting the cuckoo chick before it fledges. Desertion was not based on specific recognition of the parasite because hosts accept any chick cross-fostered into their nests. Thus, the mechanism of this adaptive host response remains enigmatic. Here, I show experimentally that the cue triggering this 'discrimination without recognition' behaviour is the duration of parental care. Neither the intensity of brood care nor the presence of a single-chick in the nest could explain desertions. Hosts responded similarly to foreign chicks, whether heterospecific or experimental conspecifics. The proposed mechanism of discrimination strikingly differs from those found in other parasite-host systems because hosts do not need an internal recognition template of the parasite's appearance to effectively discriminate. Thus, host defences against parasitic chicks may be based upon mechanisms qualitatively different from those operating against parasitic eggs. I also demonstrate that this discriminatory mechanism is non-costly in terms of recognition errors. Comparative data strongly suggest that parasites cannot counter-evolve any adaptation to mitigate effects of this host defence. These findings have crucial implications for the process and end-result of host-parasite arms races and our understanding of the cognitive basis of discriminatory mechanisms in general.
- MeSH
- analýza rozptylu MeSH
- diskriminace (psychologie) fyziologie MeSH
- druhová specificita MeSH
- financování organizované MeSH
- hnízdění fyziologie MeSH
- lidé MeSH
- mateřské chování fyziologie MeSH
- otcovské chování MeSH
- regresní analýza MeSH
- rozpoznávání (psychologie) fyziologie MeSH
- zpěvní ptáci fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- srovnávací studie MeSH
Recognition of information from acoustic signals is crucial in many animals, and individuals are under selection pressure to discriminate between the signals of conspecifics and heterospecifics or males and females. Here, we first report that rhinos use information encoded in their calls to assess conspecifics and individuals of closely related species. The southern (Ceratotherium simum) and critically endangered northern (C. cottoni) white rhinos are the most social out of all the rhinoceros species and use a contact call pant. We found that southern white rhino pant calls provide reliable information about the caller's sex, age class and social situation. Playback experiments on wild territorial southern white rhinoceros males revealed that they responded more strongly to the pant calls of conspecific females compared to the calls of other territorial males. This suggests that pant calls are more important form of communication between males and females than between territorial males. Territorial southern males also discriminated between female and territorial male calls of northern species and reacted more intensively to the calls of northern than southern males. This might be caused by a novelty effect since both species naturally live in allopatry. We conclude that white rhinos can directly benefit from assessing individuals at long distances using vocal cues especially because their eyesight is poor. Pant calls thus likely play a significant role in their social relationships and spatial organization. In addition, better understanding of vocal communication in white rhinos might be helpful in conservation management particularly because of their low reproduction in captivity.
- MeSH
- diskriminace (psychologie) fyziologie MeSH
- druhová specificita MeSH
- Perissodactyla fyziologie MeSH
- pohlavní dimorfismus MeSH
- teritorialita MeSH
- věkové faktory MeSH
- vokalizace zvířat * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The most important role in the recognition and categorization of predators (as well as other animals) is usually attributed to so-called key features. Under laboratory conditions, we tested the role of yellow eyes (specific for the genus Accipiter in European raptors) and hooked beak (common for all European birds of prey) in the recognition of the sparrowhawk (Accipiter nisus) by untrained great tits (Parus major) caught in the wild. Using wooden dummies, we interchanged either one of these potential key features or the body of the sparrowhawk (predator) and domestic pigeon (harmless bird). The tested tits showed three types of behaviour in the presence of the dummies: fear, interest without fear, and lack of interest. Eye interchange lowered fear of the sparrowhawk, but did not cause fear of the pigeon. Beak interchange did not lower fear of the sparrowhawk. Eye interchange caused increased interest in both species. Thus, a specific sparrowhawk feature is necessary for correct sparrowhawk dummy recognition but a general raptor feature is not. On the other hand, a specific sparrowhawk feature on a pigeon dummy is not enough to prompt sparrowhawk recognition. Thus, key features play an important, but not exclusive, role in predator recognition. An increased interest in some of the modified dummies implies that the tits have a general concept of a sparrowhawk. The individual variability in behaviour of tits is discussed.
A population of Desertifilum (Cyanobacteria, Oscillatoriales) from an oligotrophic desertic biotope was isolated and characterized using a polyphasic approach including molecular, morphological, and ecological information. The population was initially assumed to be a new species based on ecological and biogeographic separation from other existing species, however, phylogenetic analyses based on sequences of the 16S rRNA gene and 16S-23S ITS region, placed this strain clearly within the type species, Desertifilum tharense. Comparative analysis of morphology, 16S rRNA gene similarity, 16S-23S ITS secondary structure, and percent dissimilarity of the ITS regions for all characterized strains supports placing the six Desertifilum strains (designated as PD2001/TDC17, UAM-C/S02, CHAB7200, NapGTcm17, IPPAS B-1220, and PMC 872.14) into D. tharense. The recognition of Desertifilum salkalinema and Desertifilum dzianense is not supported, although our analysis does support continued recognition of Desertifilum fontinale. Pragmatic criteria for recognition of closely related species are proposed based on this study and others, and more rigorous review of future taxonomic papers is recommended.
Self-recognition is a trait presumed to be associated with high levels of cognition and something previously considered to be exclusive to humans and possibly apes. The most common test of self-recognition is the mark/mirror test of whether an animal can understand that it sees its own reflection in a mirror. The usual design is that an animal is marked with a colour spot somewhere on the body where the spot can only be seen by the animal by using a mirror. Very few species have passed this test, and among birds, only magpies have been affirmatively demonstrated to pass it. In this study, we tested great tits (Parus major), small passerines, that are known for their innovative foraging skills and good problem-solving abilities, in the mirror self-recognition test. We found no indication that they have any ability of this kind and believe that they are unlikely to be capable of this type of self-recognition.
- MeSH
- chování zvířat * MeSH
- kognice * MeSH
- Passeriformes fyziologie MeSH
- rozpoznávání (psychologie) * MeSH
- zraková percepce MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Coelomic fluid of the Lumbricid Eisenia fetida contains a 42-kDa pattern recognition protein named coelomic cytolytic factor (CCF) that binds microbial cell wall components and triggers the activation of the prophenoloxidase cascade, an important invertebrate defense pathway. Here we report on the sequence characterization of CCF-like molecules of other Lumbricids: Aporrectodea caliginosa, Aporrectodea icterica, Aporrectodea longa, Aporrectodea rosea, Dendrobaena veneta, Lumbricus rubellus and Lumbricus terrestris, and show that CCF from E. fetida has a broader saccharide-binding specificity, being the only one recognizing N,N'-diacetylchitobiose. We suggest that the broad recognition repertoire of E. fetida CCF reflects a particular microbial environment this species lives in.
- MeSH
- cytotoxiny farmakologie genetika metabolismus MeSH
- disacharidy metabolismus MeSH
- financování organizované MeSH
- fylogeneze MeSH
- katecholoxidasa metabolismus MeSH
- lektiny farmakologie genetika metabolismus MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- nádorové buněčné linie MeSH
- Oligochaeta genetika metabolismus MeSH
- prekurzory enzymů metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- substrátová specifita MeSH
- technika náhodné amplifikace polymorfní DNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- srovnávací studie MeSH
We compared the responses of the nesting red-backed shrikes (Lanius collurio) to three dummies of a common nest predator, the Eurasian jay (Garrulus glandarius), each made from a different material (stuffed, plush, and silicone). The shrikes performed defensive behaviour including attacks on all three dummies. Nevertheless, the number of attacks significantly decreased from the stuffed dummy through the plush dummy and finally to the silicone dummy. Our results show that wild birds use not only colours but also other surface features as important cues for recognition and categorization of other bird species. Moreover, the silicone dummy was attacked only when presented after the stuffed or plush dummy. Thus, we concluded that the shrikes recognized the jay only the stuffed (with feathered surface) and plush (with hairy surface) dummies during the first encounter. Recognition of the silicon dummy (with glossy surface) was facilitated by previous encounters with the more accurate model. This process resembles the effect of perceptual priming, which is widely described in the literature on humans.
Certain light environments may hinder egg discrimination by hosts of foreign eggs, which could in some circumstances lead to the acceptance of non-mimetic eggs by hosts. We measured light parameters at red bishop (Euplectes orix) nests and used a model of avian visual processing to quantify the detectability of eggs in the light environment in which they are perceived. We found that the overall amount of light was very variable between red bishop nests and always sufficient for colour discrimination. A model of avian visual processing revealed that nest luminosity had no influence on host responses towards eggs which were painted dark brown. Dark eggs do not appear to be cryptic in red bishop nests and can be distinguished with ease, whereas natural red bishop eggs are usually accepted, despite the domed structure of the nest. We found little variation in both chromatic and achromatic contrasts between host and artificial eggs, indicating that there was very little variation in the light quality inside nests. We suggest that nest luminosity is likely to play a role in egg recognition in situations when light reaches threshold values for colour discrimination, i.e. in scotopic as opposed to photopic vision. Rejection rates for dark eggs were higher than for bright (conspecific) foreign eggs. More investigation of domed nest-building species is required, as this type of nest appears to have a highly variable light environment, dependent on both nest structure and habitat.
- MeSH
- barva MeSH
- druhová specificita MeSH
- ekosystém MeSH
- hnízdění fyziologie MeSH
- interakce hostitele a parazita fyziologie MeSH
- ovum * MeSH
- paraziti MeSH
- Passeriformes fyziologie MeSH
- rozpoznávání (psychologie) MeSH
- světlo * MeSH
- vaječná skořápka chemie MeSH
- zraková percepce fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Citizen science and data collected from various volunteers have an interesting potential in aiding the understanding of many biological and ecological processes. We describe a mobile application that allows the public to map and report occurrences of the odonata species (dragonflies and damselflies) found in the Czech Republic. The application also helps in species classification based on observation details such as date, GPS coordinates, and the altitude, biotope, suborder, and colour. Dragonfly Hunter CZ is a free Android application built on the open-source framework NativeScript using the JavaScript programming language which is now fully available on Google Play. The server side is powered by Apache Server with PHP and MariaDB SQL database. A mobile application is a fast and accurate way to obtain data pertaining to the odonata species, which can be used after expert verification for ecological studies and conservation basis like Red Lists and policy instruments. We expect it to be effective in encouraging Citizen Science and in promoting the proactive reporting of odonates. It can also be extended to the reporting and monitoring of other plant and animal species.
- MeSH
- biodiverzita MeSH
- dobrovolní pracovníci MeSH
- ekosystém MeSH
- expertní systémy MeSH
- fuzzy logika MeSH
- mobilní aplikace * MeSH
- nadmořská výška MeSH
- roční období MeSH
- vážky * anatomie a histologie klasifikace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
It is supposed that body size serves as an important cue in the recognition of relevant stimuli in nature. As predators of varying body size pose differing levels of threat, their potential prey should be able to discriminate between them. We tested the reaction of great tits (Parus major) to the dummies of their common predator (the European sparrowhawk-Accipiter nisus) in natural and reduced body sizes under laboratory conditions. All of the tested dummies possessed local raptor-specific features (hooked beak, claws with talons, and conspicuous eyes), but differed in global species-specific features: body size (large - the size of a sparrowhawk, small - the size of a great tit) and colouration (sparrowhawk, great tit, robin, and pigeon). The sparrowhawk-coloured dummies evoked fear regardless of their size while both great tit- and pigeon-coloured dummies evoked no fear reaction. The body size was used as the cue only for the discrimination of the robin-coloured dummies. The differences in reactions to the dummies with robin colouration (species unimportant to the great tits) could be explained as that the tits are able to recognize these birds in nature, but not so undoubtedly as the predator or the conspecific.