Incomplete stent apposition and uncovered struts are associated with a higher risk of stent thrombosis. No data exist on the process of neointimal coverage and late apposition status of the bioresorbable vascular scaffold (BVS) when implanted in the highly thrombogenic setting of ST-segment elevation acute myocardial infarction (STEMI). The aim of this study was to assess the serial changes in strut apposition and early neointimal coverage of the BVS using optical coherence tomography (OCT) in selected patients enrolled in the PRAGUE-19 study. Intracoronary OCT was performed in 50 patients at the end of primary percutaneous coronary intervention for acute STEMI. Repeated OCT of the implanted BVS was performed in 10 patients. Scaffold area, scaffold mean diameter and incomplete strut apposition (ISA) were compared between baseline and control OCT. Furthermore, strut neointimal coverage was assessed during the control OCT. Mean scaffold area and diameter did not change between the baseline and control OCT (8.59 vs. 9.06 mm(2); p = 0.129 and 3.31 vs. 3.37 mm; p = 0.202, respectively). Differences were observed in ISA between the baseline and control OCT (0.63 vs. 1.47 %; p < 0.05). We observed 83.1 % covered struts in eight patients in whom the control OCT was performed 4-6 weeks after BVS implantation, and 100 % covered struts in two patients 6 months after BVS implantation. Persistent strut apposition and early neointimal coverage were observed after biodegradable vascular scaffold implantation in patients with acute ST-segment elevation myocardial infarction.
- MeSH
- Coated Materials, Biocompatible * MeSH
- Time Factors MeSH
- Everolimus administration & dosage adverse effects MeSH
- ST Elevation Myocardial Infarction diagnostic imaging therapy MeSH
- Cardiovascular Agents administration & dosage adverse effects MeSH
- Coronary Angiography MeSH
- Percutaneous Coronary Intervention adverse effects instrumentation MeSH
- Coronary Vessels diagnostic imaging drug effects MeSH
- Middle Aged MeSH
- Humans MeSH
- Neointima * MeSH
- Tomography, Optical Coherence MeSH
- Prospective Studies MeSH
- Prosthesis Design MeSH
- Aged MeSH
- Absorbable Implants * MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Study MeSH
- Geographicals
- Czech Republic MeSH
Intravascular optical coherence tomography (IVOCT) is used to assess stent tissue coverage and malapposition in stent evaluation trials. We developed the OCT Image Visualization and Analysis Toolkit for Stent (OCTivat-Stent), for highly automated analysis of IVOCT pullbacks. Algorithms automatically detected the guidewire, lumen boundary, and stent struts; determined the presence of tissue coverage for each strut; and estimated the stent contour for comparison of stent and lumen area. Strut-level tissue thickness, tissue coverage area, and malapposition area were automatically quantified. The software was used to analyze 292 stent pullbacks. The concordance-correlation-coefficients of automatically measured stent and lumen areas and independent manual measurements were 0.97 and 0.99, respectively. Eleven percent of struts were missed by the software and some artifacts were miscalled as struts giving 1% false-positive strut detection. Eighty-two percent of uncovered struts and 99% of covered struts were labeled correctly, as compared to manual analysis. Using the highly automated software, analysis was harmonized, leading to a reduction of inter-observer variability by 30%. With software assistance, analysis time for a full stent analysis was reduced to less than 30 minutes. Application of this software to stent evaluation trials should enable faster, more reliable analysis with improved statistical power for comparing designs.
- MeSH
- Endovascular Procedures instrumentation methods MeSH
- Humans MeSH
- Tomography, Optical Coherence instrumentation methods MeSH
- Sensitivity and Specificity MeSH
- Software standards MeSH
- Stents adverse effects standards MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, N.I.H., Extramural MeSH