A new class of compounds, namely highly substituted diaminocyclopentane-l-lysine adducts, have been discovered as potent inhibitors of O-GlcNAcase, an enzyme crucial for protein de-O-glycosylation. These inhibitors exhibit exceptional selectivity and reversibility and are the first example of human O-GlcNAcase inhibitors that are structurally related to the transition state of the rate-limiting step with the "aglycon" still in bond-length proximity. The ease of their preparation, remarkable biological activities, stability, and non-toxicity make them promising candidates for the development of anti-tau-phosphorylation agents holding significant potential for the treatment of Alzheimer's disease.
- MeSH
- beta-N-acetylhexosaminidasy antagonisté a inhibitory metabolismus MeSH
- cyklopentany chemie farmakologie chemická syntéza MeSH
- inhibitory enzymů * chemie farmakologie chemická syntéza MeSH
- lidé MeSH
- lysin * chemie farmakologie MeSH
- molekulární struktura MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A unified strategy for the total synthesis of the methyl esters of all phytoprostane (PhytoP) classes bearing two ring-oxygen atoms based on an orthogonally protected common precursor is described. Racemic 16-F1t-, 16-E1-PhytoP and their C-16 epimers, which also occur as racemates in Nature, were successfully obtained. The first total synthesis of very sensitive 16-D1t-PhytoP succeeded, however, it quickly isomerized to more stable, but so far also unknown Δ13-16-D1t-PhytoP, which may serve as a more reliable biomarker for D-type PhytoP. The dioxygenated cyclopentane ring carrying the ω-chain with the oxygen functionality in the 16-position was approached by a radical oxidative cyclization mediated by ferrocenium hexafluorophosphate and TEMPO. The α-chain was introduced by a new copper-catalyzed alkyl-alkyl coupling of a 6-heptenyl Grignard reagent with a functionalized cyclopentylmethyl triflate.
Cyclopentenediones (CPDs) are compounds with a variety of applications ranging from the preparation of functional polymers to the development of antimicrobial agents, suggesting the potential use of CPDs as novel bioactive compounds or drugs. For this reason, a detailed characterization of CPDs and the development of robust analytical methods for their trace analysis are being sought. Here we focused on the design and synthesis of a library of novelized benzylidene CPD derivatives that were consequently characterized by ultra-high performance liquid chromatography (UHPLC) on-line connected with tandem mass spectrometry (MS/MS). The library design was based on a 2-benzylidene-4-cyclopentene-1,3-dione skeleton substituted with a variety of hydroxy, methoxy, halogen, linear aliphatic, heterocyclic and saccharide moieties, primarily modulating the skeleton's hydrophobicity. The prepared CPDs were effectively ionized by positive/negative atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI). After careful optimization of the dopant composition and flow rate, positive-mode APPI proved to be more sensitive than APCI. In negative mode, both ionization techniques gave similar results. Further, a detailed MS fragmentation study was performed, confirming the structure of the compounds and enabling positional isomers of CPDs to be differentiated on the basis of their collision spectra analysis. Finally, an optimization of the composition of the mobile phase and reversed-phased separation mode were done, followed by a selection of the most suitable UHPLC stationary phases, i.e. C18, C8 and phenyl. The applicability of the method was evaluated by the inclusion of the other two substances in the study, i.e. monomeric and dimeric bioactive CPDs, compound TX-1123 and nostotrebin 6 with cytostatic and antimicrobial activities, respectively. The results presented here could be used in further investigations of the chromatographic retention and MS behavior of CPDs, which could be utilized for their isolation, detailed characterization and analysis in biological systems.
Cyclopentenediones (CPDs) are secondary metabolites of higher plants, fungi, algae, cyanobacteria and bacteria. A common denominator of CPDs is the cyclopent-4-ene-1,3-dione skeleton (1), which is modified by several functional groups. The heterogeneity of these substitutions is reflected in around one hundred CPDs reported to date. Most of the derivatives were isolated primarily from plant sources. Synthetic analogues were then prepared with new biological activities and more interesting pharmacological potential. Antifungal substances called coruscanones (2, 3) are the most studied of the CPDs. Other intensely investigated CPDs include lucidone (4), linderone (5), asterredione (6), involutone (7), nostotrebin 6 (8), TX-1123 (9), G2201-C (10), madindolines (11, 12) and many others. In addition to antibacterial and antifungal effects, a broad spectrum of biological activities for CPDs has been reported in the past two decades, especially anti-inflammatory, cytostatic and specific enzyme inhibitory activities. The CPD skeleton has been identified in a number of substances isolated from the plant kingdom; hence, CPDs can be referred to as a new group of natural bioactive substances. The main goal of this review is to define CPDs with respect to basic chemistry, isolation, synthetic approaches and description of their biological effects. Special attention is given to a detailed view into biological activities of CPDs in vitro and their phamacological potential.
- MeSH
- antiflogistika chemie izolace a purifikace farmakologie MeSH
- antiinfekční látky chemie izolace a purifikace farmakologie MeSH
- apoptóza účinky léků MeSH
- Candida albicans účinky léků MeSH
- cyklopentany chemická syntéza chemie farmakologie MeSH
- cytostatické látky chemie izolace a purifikace toxicita MeSH
- gramnegativní bakterie účinky léků MeSH
- grampozitivní bakterie účinky léků MeSH
- houby chemie metabolismus MeSH
- inhibitory enzymů chemie izolace a purifikace MeSH
- rostliny chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The inhibition of overactive CDKs during cancer remains an important strategy in cancer drug development. We synthesized and screened a novel series of 2-substituted-6-biarylmethylamino-9-cyclopentylpurine derivatives for improved CDK inhibitory activity and antiproliferative effects. One of the most potent compounds, 6b, exhibited strong cytotoxicity in the human melanoma cell line G361 that correlated with robust CDK1 and CDK2 inhibition and caspase activation. In silico modeling of 6b in the active site of CDK2 revealed a high interaction energy, which we believe is due to the 6-heterobiarylmethylamino substitution of the purine moiety.
- MeSH
- adenin analogy a deriváty chemická syntéza chemie farmakologie MeSH
- antitumorózní látky chemická syntéza chemie farmakologie MeSH
- apoptóza MeSH
- cyklin-dependentní kinasa 2 antagonisté a inhibitory MeSH
- cyklin-dependentní kinasy antagonisté a inhibitory MeSH
- cyklopentany chemická syntéza chemie farmakologie MeSH
- fosforylace MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- methylaminy chemická syntéza chemie farmakologie MeSH
- molekulární modely MeSH
- nádorové buněčné linie MeSH
- počítačová simulace MeSH
- proteinkinasa CDC2 antagonisté a inhibitory MeSH
- puriny chemická syntéza chemie farmakologie MeSH
- retinoblastomový protein metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A series of simple desmethoxy analogues of coruscanone A was prepared via a novel version of Ti(iPrO)(4)-mediated Knoevenagel condensation of cyclopentenedione with substituted benzaldehydes and cinnamic aldehydes, and the compounds were evaluated for antifungal activity and cytotoxicity. The most potent 2-benzylidenecyclopent-4-ene-1,3-dione possessed antifungal effect comparable to coruscanone A and a somewhat broader spectrum of activity against Candida species. The compound was also superior to fluconazole against several non-albicans Candida sp. Evaluation of the ability of the compound to influence cell proliferation using two different assays showed that 2-benzylidenecyclopent-4-ene-1,3-dione has lower cytotoxicity compared to the natural product.
- MeSH
- antifungální látky chemická syntéza chemie farmakologie MeSH
- buněčné linie MeSH
- Candida účinky léků MeSH
- cyklopentany chemická syntéza chemie farmakologie MeSH
- gama-butyrolakton analogy a deriváty chemická syntéza chemie farmakologie MeSH
- kandidóza farmakoterapie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH