Zubní kaz (ZK) je jedno z nejčastějších chronických infekčních onemocnění dětského věku. Kromě nadměrného příjmu sacharidů a přítomnosti zubního mikrobiálního plaku se za další významné rizikové faktory vzniku ZK pokládá složení tvrdých zubních tkání a sliny. Slina odráží fyziologický a patologický stav dutiny ústní a hraje významnou roli při vzniku a prevenci zubního kazu. Možnými biomarkery zubního kazu je řada měřitelných vlastností sliny - množství sliny, pH sliny, pufrovací kapacita, přítomnost a množství kariogenních mikroorganismů. Hlavními složkami sliny jsou voda a různé anorganické a organické substance. Za významné organické látky se považují antimikrobiální peptidy, slinné glykoproteiny a proteiny s enzymatickou aktivitou. Tyto látky mohou sloužit jako zdroj biomarkerů pro stanovení rizika vzniku zubního kazu. Slinné biomarkery mohou být využity nejen pro predikci, diagnostiku, prognózu a ošetřování zubního kazu, ale i pro hodnocení výsledků léčení. Cílem dalších výzkumů bude charakterizovat vztahy mezi jednotlivými proteiny, jejich interakce a určit, jakým způsobem ovlivňují vznik a progresi zubního kazu.
Dental caries is one of the most common chronic infectious diseases of childhood. In addition to excessive sugar intake and presence of dental microbial plaque, other risk factors related to dental caries are the composition of hard dental tissues and saliva. Saliva can reflect the physiological and pathological state of the oral cavity and plays a crucial role in the initiation of dental caries and protection against dental caries. Many measurable characteristics of saliva are potential biomarkers for dental caries - salivary flow rate, salivary pH, buffering capacity, evaluation of the presence and amount of cariogenic bacteria. The major salivary components are water and various, inorganic and organic substances. The most important organic components of saliva comprise antibacterial peptides, salivary glycoproteins, salivary proteins and proteins with enzymatic activity. These substances can serve as a source of biomarkers for caries risk assessment. Salivary biomarkers may be exploited for the prediction, diagnosis, prognosis and management of dental caries, as well as for evaluating the outcome of therapeutic regimens. Future research is essential to characterize the interaction of salivary proteins, and determine how these affect the initiation and development of dental caries.
BACKGROUND AND OBJECTIVE: The minor T-allele of the MUC5B promoter polymorphism rs35705950 is strongly associated with idiopathic pulmonary fibrosis (IPF). However, conflicting results have been reported on the relationship between the MUC5B minor allele and survival and it is unknown whether a specific subgroup of IPF patients might benefit from MUC5B minor allele carriage. We investigated the association between MUC5B rs35705950, survival and patient characteristics in a real-world population of European IPF patients. METHODS: In this retrospective study, 1751 patients with IPF from 8 European centres were included. MUC5B rs35705950 genotype, demographics, clinical characteristics at diagnosis and survival data were analysed. RESULTS: In a multi-variate Cox proportional hazard model the MUC5B minor allele was a significant independent predictor of survival when adjusted for age, sex, high resolution computed tomography pattern, smoking behaviour and pulmonary function tests in IPF. MUC5B minor allele carriers were significantly older at diagnosis (p = 0.001). The percentage of MUC5B minor allele carriers increased significantly with age from 44% in patients aged <56 year, to 63% in patients aged >75. In IPF patients aged <56, the MUC5B minor allele was not associated with survival. In IPF patients aged ≥56, survival was significantly better for MUC5B minor allele carriers (45 months [CI: 42-49]) compared to non-carriers (29 months [CI: 26-33]; p = 4 × 10-12 ). CONCLUSION: MUC5B minor allele carriage associates with a better median transplant-free survival of 16 months in the European IPF population aged over 56 years. MUC5B genotype status might aid disease prognostication in clinical management of IPF patients.
- MeSH
- alely MeSH
- genetická predispozice k nemoci MeSH
- genotyp MeSH
- idiopatická plicní fibróza * genetika MeSH
- lidé MeSH
- mucin 5B genetika MeSH
- polymorfismus genetický MeSH
- retrospektivní studie MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tick saliva injected into the vertebrate host contains bioactive anti-proteolytic proteins from the cystatin family; however, the molecular basis of their unusual biochemical and physiological properties, distinct from those of host homologs, is unknown. Here, we present Ricistatin, a novel secreted cystatin identified in the salivary gland transcriptome of Ixodes ricinus ticks. Recombinant Ricistatin inhibited host-derived cysteine cathepsins and preferentially targeted endopeptidases, while having only limited impact on proteolysis driven by exopeptidases. Determination of the crystal structure of Ricistatin in complex with a cysteine cathepsin together with characterization of structural determinants in the Ricistatin binding site explained its restricted specificity. Furthermore, Ricistatin was potently immunosuppressive and anti-inflammatory, reducing levels of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α and nitric oxide in macrophages; IL-2 and IL-9 levels in Th9 cells; and OVA antigen-induced CD4+ T cell proliferation and neutrophil migration. This work highlights the immunotherapeutic potential of Ricistatin and, for the first time, provides structural insights into the unique narrow selectivity of tick salivary cystatins determining their bioactivity.
- MeSH
- cystatiny * farmakologie MeSH
- cystein metabolismus MeSH
- endopeptidasy metabolismus MeSH
- kathepsiny metabolismus MeSH
- klíště * chemie MeSH
- obratlovci MeSH
- proteasy metabolismus MeSH
- slinné cystatiny chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Salivary glands from blood-feeding arthropods secrete several molecules that inhibit mammalian hemostasis and facilitate blood feeding and pathogen transmission. The salivary functions from Simulium guianense, the main vector of Onchocerciasis in South America, remain largely understudied. Here, we have characterized a salivary protease inhibitor (Guianensin) from the blackfly Simulium guianense. MATERIALS AND METHODS: A combination of bioinformatic and biophysical analyses, recombinant protein production, in vitro and in vivo experiments were utilized to characterize the molecula mechanism of action of Guianensin. Kinetics of Guianensin interaction with proteases involved in vertebrate inflammation and coagulation were carried out by surface plasmon resonance and isothermal titration calorimetry. Plasma recalcification and coagulometry and tail bleeding assays were performed to understand the role of Guianensin in coagulation. RESULTS: Guianensin was identified in the sialotranscriptome of adult S. guianense flies and belongs to the Kunitz domain of protease inhibitors. It targets various serine proteases involved in hemostasis and inflammation. Binding to these enzymes is highly specific to the catalytic site and is not detectable for their zymogens, the catalytic site-blocked human coagulation factor Xa (FXa), or thrombin. Accordingly, Guianensin significantly increased both PT (Prothrombin time) and aPTT (Activated partial thromboplastin time) in human plasma and consequently increased blood clotting time ex vivo. Guianensin also inhibited prothrombinase activity on endothelial cells. We show that Guianensin acts as a potent anti-inflammatory molecule on FXa-induced paw edema formation in mice. CONCLUSION: The information generated by this work highlights the biological functionality of Guianensin as an antithrombotic and anti-inflammatory protein that may play significant roles in blood feeding and pathogen transmission.
- MeSH
- antiflogistika farmakologie MeSH
- endoteliální buňky MeSH
- hemostatika * MeSH
- hemostáza MeSH
- lidé MeSH
- myši MeSH
- savci MeSH
- Simuliidae * MeSH
- slinné proteiny a peptidy farmakologie MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Intramural MeSH
Ixodes ricinus and Ixodes scapularis are the main vectors for the causative agents of Lyme borreliosis and a wide range of other pathogens. Repeated tick-bites are known to lead to tick rejection; a phenomenon designated as tick immunity. Tick immunity is mainly directed against tick salivary gland proteins (TSGPs) and has been shown to partially protect against experimental Lyme borreliosis. TSGPs recognized by antibodies from tick immune animals could therefore be interesting candidates for an anti-tick vaccine, which might also block pathogen transmission. To identify conserved Ixodes TSGPs that could serve as a universal anti-tick vaccine in both Europe and the US, a Yeast Surface Display containing salivary gland genes of nymphal I. ricinus expressed at 24, 48 and 72 h into tick feeding was probed with either sera from rabbits repeatedly exposed for 24 h to I. ricinus nymphal ticks and/or sera from rabbits immune to I. scapularis. Thus, we identified thirteen TSGP vaccine candidates, of which ten were secreted. For vaccination studies in rabbits, we selected six secreted TSGPs, five full length and one conserved peptide. None of these proteins hampered tick feeding. In contrast, vaccination of guinea pigs with four non-secreted TSGPs - two from the current and two from a previous human immunoscreening - did significantly reduce tick attachment and feeding. Therefore, non-secreted TSGPs appear to be involved in the development of tick immunity and are interesting candidates for an anti-tick vaccine.
In Europe, Ixodes ricinus is the most important vector of human infectious diseases, most notably Lyme borreliosis and tick-borne encephalitis virus. Multiple non-natural hosts of I. ricinus have shown to develop immunity after repeated tick bites. Tick immunity has also been shown to impair B. burgdorferi transmission. Most interestingly, multiple tick bites reduced the likelihood of contracting Lyme borreliosis in humans. A vaccine that mimics tick immunity could therefore potentially prevent Lyme borreliosis in humans. A yeast surface display library (YSD) of nymphal I. ricinus salivary gland genes expressed at 24, 48 and 72 h into tick feeding was constructed and probed with antibodies from humans repeatedly bitten by ticks, identifying twelve immunoreactive tick salivary gland proteins (TSGPs). From these, three proteins were selected for vaccination studies. An exploratory vaccination study in cattle showed an anti-tick effect when all three antigens were combined. However, immunization of rabbits did not provide equivalent levels of protection. Our results show that YSD is a powerful tool to identify immunodominant antigens in humans exposed to tick bites, yet vaccination with the three selected TSGPs did not provide protection in the present form. Future efforts will focus on exploring the biological functions of these proteins, consider alternative systems for recombinant protein generation and vaccination platforms and assess the potential of the other identified immunogenic TSGPs.
- MeSH
- antigeny krev imunologie izolace a purifikace MeSH
- Borrelia burgdorferi izolace a purifikace MeSH
- imunizace MeSH
- infestace klíšťaty imunologie parazitologie MeSH
- klíště imunologie MeSH
- kousnutí klíštětem imunologie MeSH
- králíci MeSH
- lidé MeSH
- lymeská nemoc krev parazitologie přenos MeSH
- metody zobrazení buněčného povrchu metody MeSH
- peptidová knihovna MeSH
- peptidové fragmenty imunologie MeSH
- Saccharomyces cerevisiae MeSH
- skot MeSH
- slinné proteiny a peptidy imunologie MeSH
- slinné žlázy imunologie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- mužské pohlaví MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.
- MeSH
- Leishmania donovani * MeSH
- lidé MeSH
- Phlebotomus * MeSH
- slinné proteiny a peptidy MeSH
- sliny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Bangladéš MeSH
Salivary urea is studied as a non-invasive alternative for screening and monitoring of renal diseases. Its high variability prevents a wider clinical use. Animal experiments are needed to identify factors affecting this marker. The aim of this study was to describe the inter-individual variability of salivary urea in healthy mice, establish reference intervals, and analyse the effects of sex, age and body weight. Plasma and saliva samples were obtained from 37 male and 41 female healthy adult CD1 mice aged 13-69 weeks (body weight 22-51 g). The reference interval for salivary urea in heathy mice based on our results is 2.7-8.4 mmol/l (CV = 23 %). Multivariate analysis did not show any significant effect of age, sex, or body weight. In addition, salivary urea did not correlate with its plasma concentrations. The high variability of the promising salivary marker of kidney function in healthy mice requires further research before its use to diagnose or monitor renal failure in animal models of kidney diseases. Other potential confounders should be analysed, including intra-individual and pre-analytical variability. In addition, a normalization factor such as total salivary proteins or salivation rate is likely needed.
- MeSH
- chronická renální insuficience * MeSH
- močovina MeSH
- myši MeSH
- pilotní projekty MeSH
- slinné proteiny a peptidy MeSH
- sliny * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tick saliva is a rich source of pharmacologically and immunologically active molecules. These salivary components are indispensable for successful blood feeding on vertebrate hosts and are believed to facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-3, a protein expressed in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Belonging to the serpin superfamily of protease inhibitors, Iripin-3 strongly inhibited the proteolytic activity of serine proteases kallikrein and matriptase. In an in vitro setup, Iripin-3 was capable of modulating the adaptive immune response as evidenced by reduced survival of mouse splenocytes, impaired proliferation of CD4+ T lymphocytes, suppression of the T helper type 1 immune response, and induction of regulatory T cell differentiation. Apart from altering acquired immunity, Iripin-3 also inhibited the extrinsic blood coagulation pathway and reduced the production of pro-inflammatory cytokine interleukin-6 by lipopolysaccharide-stimulated bone marrow-derived macrophages. In addition to its functional characterization, we present the crystal structure of cleaved Iripin-3 at 1.95 Å resolution. Iripin-3 proved to be a pluripotent salivary serpin with immunomodulatory and anti-hemostatic properties that could facilitate tick feeding via the suppression of host anti-tick defenses. Physiological relevance of Iripin-3 activities observed in vitro needs to be supported by appropriate in vivo experiments.
- MeSH
- adaptivní imunita účinky léků MeSH
- aktivace lymfocytů účinky léků MeSH
- antikoagulancia izolace a purifikace farmakologie MeSH
- cytokiny metabolismus MeSH
- hemokoagulace účinky léků MeSH
- hmyzí proteiny izolace a purifikace farmakologie MeSH
- imunologické faktory izolace a purifikace farmakologie MeSH
- inhibitory proteas izolace a purifikace farmakologie MeSH
- klíště metabolismus MeSH
- králíci MeSH
- kultivované buňky MeSH
- lidé MeSH
- lymfocyty účinky léků imunologie metabolismus MeSH
- morčata MeSH
- myši inbrední C3H MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- proliferace buněk účinky léků MeSH
- slezina účinky léků imunologie metabolismus MeSH
- slinné proteiny a peptidy izolace a purifikace farmakologie MeSH
- sliny metabolismus MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- morčata MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cystic fibrosis (CF) is the most common genetic disease in Caucasians. CF is manifested by abnormal accumulation of mucus in the lungs, which serves as fertile ground for the growth of microorganisms leading to recurrent infections and ultimately, lung failure. Mucus in CF patients consists of DNA from dead neutrophils as well as mucins produced by goblet cells. MUC5AC mucin leads to pathological plugging of the airways whereas MUC5B has a protective role against bacterial infection. Therefore, decreasing the level of MUC5AC while maintaining MUC5B intact would in principle be a desirable mucoregulatory treatment outcome. Fenretinide prevented the lipopolysaccharide-induced increase of MUC5AC gene expression, without affecting the level of MUC5B, in a lung goblet cell line. Additionally, fenretinide treatment reversed the pro-inflammatory imbalance of fatty acids by increasing docosahexaenoic acid and decreasing the levels of arachidonic acid in a lung epithelial cell line and primary leukocytes derived from CF patients. Furthermore, for the first time we also demonstrate the effect of fenretinide on multiple unsaturated fatty acids, as well as differential effects on the levels of long- compared to very-long-chain saturated fatty acids which are important substrates of complex phospholipids. Finally, we demonstrate that pre-treating mice with fenretinide in a chronic model of P. aeruginosa lung infection efficiently decreases the accumulation of mucus. These findings suggest that fenretinide may offer a new approach to therapeutic modulation of pathological mucus production in CF.
- MeSH
- aplikace orální MeSH
- buněčné linie MeSH
- cystická fibróza komplikace genetika patologie MeSH
- fenretinid aplikace a dávkování MeSH
- fosfolipidy metabolismus MeSH
- hlen metabolismus MeSH
- krysa rodu rattus MeSH
- kyselina arachidonová metabolismus MeSH
- kyseliny dokosahexaenové metabolismus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- mucin 5AC metabolismus MeSH
- mucin 5B metabolismus MeSH
- myši inbrední CFTR MeSH
- myši MeSH
- plíce účinky léků metabolismus patologie MeSH
- pneumonie mikrobiologie patologie prevence a kontrola MeSH
- pseudomonádové infekce mikrobiologie patologie prevence a kontrola MeSH
- Pseudomonas aeruginosa patogenita MeSH
- respirační sliznice cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH