UNLABELLED: Trypanosomatids are among the most extensively studied protists due to their parasitic interactions with insects, vertebrates, and plants. Recently, Blastocrithidia nonstop was found to depart from the canonical genetic code, with all three stop codons reassigned to encode amino acids (UAR for glutamate and UGA for tryptophan), and UAA having dual meaning also as a termination signal (glutamate and stop). To explore features linked to this phenomenon, we analyzed the genomes of four Blastocrithidia and four Obscuromonas species, the latter representing a sister group employing the canonical genetic code. We found that all Blastocrithidia species encode cognate tRNAs for UAR codons, possess a distinct 4 bp anticodon stem tRNATrpCCA decoding UGA, and utilize UAA as the only stop codon. The distribution of in-frame reassigned codons is consistently non-random, suggesting a translational burden avoided in highly expressed genes. Frame-specific enrichment of UAA codons immediately following the genuine UAA stop codon, not observed in Obscuromonas, points to a specific mode of termination. All Blastocrithidia species possess specific mutations in eukaryotic release factor 1 and a unique acidic region following the prion-like N-terminus of eukaryotic release factor 3 that may be associated with stop codon readthrough. We infer that the common ancestor of the genus Blastocrithidia already exhibited a GC-poor genome with the non-canonical genetic code. Our comparative analysis highlights features associated with this extensive stop codon reassignment. This cascade of mutually dependent adaptations, driven by increasing AU-richness in transcripts and frequent emergence of in-frame stops, underscores the dynamic interplay between genome composition and genetic code plasticity to maintain vital functionality. IMPORTANCE: The genetic code, assigning amino acids to codons, is almost universal, yet an increasing number of its alterations keep emerging, mostly in organelles and unicellular eukaryotes. One such case is the trypanosomatid genus Blastocrithidia, where all three stop codons were reassigned to amino acids, with UAA also serving as a sole termination signal. We conducted a comparative analysis of four Blastocrithidia species, all with the same non-canonical genetic code, and their close relatives of the genus Obscuromonas, which retain the canonical code. This across-genome comparison allowed the identification of key traits associated with genetic code reassignment in Blastocrithidia. This work provides insight into the evolutionary steps, facilitating an extensive departure from the canonical genetic code that occurred independently in several eukaryotic lineages.
- Klíčová slova
- AT-rich genomes, eukaryotic release factors, nuclear genetic code, reassigned codon, tRNA structure, termination of translation,
- MeSH
- buněčné jádro * genetika MeSH
- fylogeneze MeSH
- genetický kód * MeSH
- genom protozoální * MeSH
- genomika MeSH
- molekulární evoluce MeSH
- RNA transferová genetika MeSH
- terminační kodon genetika MeSH
- Trypanosomatina * genetika klasifikace MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- RNA transferová MeSH
- terminační kodon MeSH
An increased level of phosphorylation of eukaryotic translation initiation factor 2 subunit-α (eIF2α, encoded by EIF2S1; eIF2α-p) coupled with decreased guanine nucleotide exchange activity of eIF2B is a hallmark of the 'canonical' integrated stress response (c-ISR)1. It is unclear whether impaired eIF2B activity in human diseases including leukodystrophies2, which occurs in the absence of eIF2α-p induction, is synonymous with the c-ISR. Here we describe a mechanism triggered by decreased eIF2B activity, distinct from the c-ISR, which we term the split ISR (s-ISR). The s-ISR is characterized by translational and transcriptional programs that are different from those observed in the c-ISR. Opposite to the c-ISR, the s-ISR requires eIF4E-dependent translation of the upstream open reading frame 1 and subsequent stabilization of ATF4 mRNA. This is followed by altered expression of a subset of metabolic genes (for example, PCK2), resulting in metabolic rewiring required to maintain cellular bioenergetics when eIF2B activity is attenuated. Overall, these data demonstrate a plasticity of the mammalian ISR, whereby the loss of eIF2B activity in the absence of eIF2α-p induction activates the eIF4E-ATF4-PCK2 axis to maintain energy homeostasis.
- MeSH
- energetický metabolismus genetika MeSH
- eukaryotické iniciační faktory * metabolismus MeSH
- eukaryotický iniciační faktor 2 metabolismus MeSH
- eukaryotický iniciační faktor 2B metabolismus nedostatek MeSH
- eukaryotický iniciační faktor 4E metabolismus MeSH
- fosforylace MeSH
- fyziologický stres * genetika MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- myši MeSH
- proteosyntéza MeSH
- stabilita RNA MeSH
- transkripční faktor ATF4 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ATF4 protein, human MeSH Prohlížeč
- eukaryotické iniciační faktory * MeSH
- eukaryotický iniciační faktor 2 MeSH
- eukaryotický iniciační faktor 2B MeSH
- eukaryotický iniciační faktor 4E MeSH
- messenger RNA MeSH
- transkripční faktor ATF4 MeSH
Transfer RNAs (tRNAs) serve as a dictionary for the ribosome translating the genetic message from mRNA into a polypeptide chain. In addition to this canonical role, tRNAs are involved in other processes such as programmed stop codon readthrough (SC-RT). There, tRNAs with near-cognate anticodons to stop codons must outcompete release factors and incorporate into the ribosomal decoding center to prevent termination and allow translation to continue. However, not all near-cognate tRNAs promote efficient SC-RT. Here, with the help of Saccharomyces cerevisiae and Trypanosoma brucei, we demonstrate that those tRNAs that promote efficient SC-RT establish critical contacts between their anticodon stem (AS) and ribosomal proteins Rps30/eS30 and Rps25/eS25 forming the decoding site. Unexpectedly, the length and well-defined nature of the AS determine the strength of these contacts, which is reflected in organisms with reassigned stop codons. These findings open an unexplored direction in tRNA biology that should facilitate the design of artificial tRNAs with specifically altered decoding abilities.
- MeSH
- antikodon metabolismus MeSH
- konformace nukleové kyseliny MeSH
- proteosyntéza * MeSH
- ribozomální proteiny metabolismus MeSH
- ribozomy * metabolismus MeSH
- RNA transferová * metabolismus genetika chemie MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- terminační kodon * genetika metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antikodon MeSH
- ribozomální proteiny MeSH
- RNA transferová * MeSH
- terminační kodon * MeSH
Dual reporters encoding two distinct proteins within the same mRNA have had a crucial role in identifying and characterizing unconventional mechanisms of eukaryotic translation. These mechanisms include initiation via internal ribosomal entry sites (IRESs), ribosomal frameshifting, stop codon readthrough and reinitiation. This design enables the expression of one reporter to be influenced by the specific mechanism under investigation, while the other reporter serves as an internal control. However, challenges arise when intervening test sequences are placed between these two reporters. Such sequences can inadvertently impact the expression or function of either reporter, independent of translation-related changes, potentially biasing the results. These effects may occur due to cryptic regulatory elements inducing or affecting transcription initiation, splicing, polyadenylation and antisense transcription as well as unpredictable effects of the translated test sequences on the stability and activity of the reporters. Unfortunately, these unintended effects may lead to misinterpretation of data and the publication of incorrect conclusions in the scientific literature. To address this issue and to assist the scientific community in accurately interpreting dual-reporter experiments, we have developed comprehensive guidelines. These guidelines cover experimental design, interpretation and the minimal requirements for reporting results. They are designed to aid researchers conducting these experiments as well as reviewers, editors and other investigators who seek to evaluate published data.
- MeSH
- Eukaryota * genetika MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- proteosyntéza MeSH
- reportérové geny * MeSH
- směrnice jako téma * MeSH
- výzkumný projekt * normy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- messenger RNA MeSH
Activating transcription factor 4 (ATF4) is a key player in the integrated stress response, whose expression is subject to tight translational control. Studying its stress-provoked induction, accompanied by the general translational shutdown, is intricate because the expression of reference genes declines rapidly, and finding appropriate normalization controls is challenging. We present a protocol for human hemagglutinin-tagged ATF4 (hATF4-HA) detection and high-throughput quantification in non-stress versus stress conditions using automated and quantitative western blotting. We describe steps for seeding cells, transfecting plasmids, thapsigargin treatment, sample preparation, and target protein detection. For complete details on the use and execution of this protocol, please refer to Smirnova et al.1.
- Klíčová slova
- cell culture, gene expression, protein expression and purification,
- MeSH
- fyziologický stres * fyziologie MeSH
- HEK293 buňky MeSH
- hemaglutininy genetika metabolismus MeSH
- lidé MeSH
- transkripční faktor ATF4 * metabolismus genetika MeSH
- western blotting * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATF4 protein, human MeSH Prohlížeč
- hemaglutininy MeSH
- transkripční faktor ATF4 * MeSH
Mitochondrial morphology is an important parameter of cellular fitness. Although many approaches are available for assessing mitochondrial morphology in mammalian cells, only a few technically demanding and laborious methods are available for yeast cells. A robust, fully automated and user-friendly approach that would allow (1) segmentation of tubular and spherical mitochondria in the yeast Saccharomyces cerevisiae from conventional wide-field fluorescence images and (2) quantitative assessment of mitochondrial morphology is lacking. To address this, we compared Global thresholding segmentation with deep learning MitoSegNet segmentation, which we retrained on yeast cells. The deep learning model outperformed the Global thresholding segmentation. We applied it to segment mitochondria in strain lacking the MMI1/TMA19 gene encoding an ortholog of the human TCTP protein. Next, we performed a quantitative evaluation of segmented mitochondria by analyses available in ImageJ/Fiji and by MitoA analysis available in the MitoSegNet toolbox. By monitoring a wide range of morphological parameters, we described a novel mitochondrial phenotype of the mmi1Δ strain after its exposure to oxidative stress compared to that of the wild-type strain. The retrained deep learning model, all macros applied to run the analyses, as well as the detailed procedure are now available at https://github.com/LMCF-IMG/Morphology_Yeast_Mitochondria .
- Klíčová slova
- Deep learning, Mitochondria, Mmi1, Oxidative stress, TCTP, Yeast,
- MeSH
- deep learning MeSH
- fluorescenční mikroskopie metody MeSH
- mitochondrie * metabolismus MeSH
- oxidační stres MeSH
- počítačové zpracování obrazu * metody MeSH
- Saccharomyces cerevisiae - proteiny metabolismus genetika MeSH
- Saccharomyces cerevisiae * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Saccharomyces cerevisiae - proteiny MeSH
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
- Klíčová slova
- MAPK pathway, eIF3, genetics, genomics, human, ribosomal proteins, ribosome, translation, translational control,
- MeSH
- eukaryotický iniciační faktor 3 * metabolismus genetika MeSH
- HeLa buňky MeSH
- lidé MeSH
- MAP kinasový signální systém * MeSH
- proteosyntéza MeSH
- protoonkogen Mas * MeSH
- ribozomální proteiny * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 * MeSH
- MAS1 protein, human MeSH Prohlížeč
- protoonkogen Mas * MeSH
- ribozomální proteiny * MeSH
Human cytoplasmic tRNAs contain dihydrouridine modifications at positions 16 and 17 (D16/D17). The enzyme responsible for D16/D17 formation and its cellular roles remain elusive. Here, we identify DUS1L as the human tRNA D16/D17 writer. DUS1L knockout in the glioblastoma cell lines LNZ308 and U87 causes loss of D16/D17. D formation is reconstituted in vitro using recombinant DUS1L in the presence of NADPH or NADH. DUS1L knockout/overexpression in LNZ308 cells shows that DUS1L supports cell growth. Moreover, higher DUS1L expression in glioma patients is associated with poorer prognosis. Upon vector-mediated DUS1L overexpression in LNZ308 cells, 5' and 3' processing of precursor tRNATyr(GUA) is inhibited, resulting in a reduced mature tRNATyr(GUA) level, reduced translation of the tyrosine codons UAC and UAU, and reduced translational readthrough of the near-cognate stop codons UAA and UAG. Moreover, DUS1L overexpression increases the amounts of several D16/D17-containing tRNAs and total cellular translation. Our study identifies a human dihydrouridine writer, providing the foundation to study its roles in health and disease.
- MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- proteosyntéza * MeSH
- RNA transferová * metabolismus genetika MeSH
- uridin metabolismus analogy a deriváty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA transferová * MeSH
- uridin MeSH
Recycling of 40S ribosomal subunits following translation termination, entailing release of deacylated tRNA and dissociation of the empty 40S from mRNA, involves yeast Tma20/Tma22 heterodimer and Tma64, counterparts of mammalian MCTS1/DENR and eIF2D. MCTS1/DENR enhance reinitiation (REI) at short upstream open reading frames (uORFs) harboring penultimate codons that confer heightened dependence on these factors in bulk 40S recycling. Tma factors, by contrast, inhibited REI at particular uORFs in extracts; however, their roles at regulatory uORFs in vivo were unknown. We examined effects of eliminating Tma proteins on REI at regulatory uORFs mediating translational control of GCN4 optimized for either promoting (uORF1) or preventing (uORF4) REI. We found that the Tma proteins generally impede REI at native uORF4 and its variants equipped with various penultimate codons regardless of their Tma-dependence in bulk recycling. The Tma factors have no effect on REI at native uORF1 and equipping it with Tma-hyperdependent penultimate codons generally did not confer Tma-dependent REI; nor did converting the uORFs to AUG-stop elements. Thus, effects of the Tma proteins vary depending on the REI potential of the uORF and penultimate codon, but unlike in mammals, are not principally dictated by the Tma-dependence of the codon in bulk 40S recycling.
- MeSH
- iniciace translace peptidového řetězce MeSH
- malé podjednotky ribozomu eukaryotické * metabolismus genetika MeSH
- messenger RNA * metabolismus genetika MeSH
- otevřené čtecí rámce * MeSH
- proteosyntéza MeSH
- Saccharomyces cerevisiae - proteiny * metabolismus genetika MeSH
- Saccharomyces cerevisiae * genetika metabolismus MeSH
- transkripční faktory bZIP * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GCN4 protein, S cerevisiae MeSH Prohlížeč
- messenger RNA * MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- transkripční faktory bZIP * MeSH
Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.
- MeSH
- Bacillus subtilis genetika metabolismus MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- bakteriální RNA * metabolismus genetika MeSH
- Corynebacterium glutamicum genetika metabolismus MeSH
- DNA řízené RNA-polymerasy * metabolismus genetika MeSH
- genetická transkripce MeSH
- konformace nukleové kyseliny MeSH
- Mycobacterium smegmatis genetika metabolismus enzymologie MeSH
- Mycobacterium tuberculosis genetika metabolismus MeSH
- nekódující RNA MeSH
- regulace genové exprese u bakterií MeSH
- sigma faktor * metabolismus genetika MeSH
- Streptomyces coelicolor genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 6S RNA MeSH Prohlížeč
- bakteriální proteiny * MeSH
- bakteriální RNA * MeSH
- DNA řízené RNA-polymerasy * MeSH
- nekódující RNA MeSH
- sigma faktor * MeSH