ROS production
Dotaz
Zobrazit nápovědu
We investigated hydrogen peroxide production in mitochondria with low (liver, heart, brain) and high (brown adipose tissue, BAT) content of glycerophosphate dehydrogenase (mGPDH). ROS production at state 4 due to electron backflow from mGPDH was low, but after inhibition of electron transport with antimycin A high rates of mGPDH-dependent ROS production were observed in liver, heart and brain mitochondria. When this ROS production was related to activity of mGPDH, many-fold higher ROS production was found in contrast to succinate- (39-, 28-, 3-fold) or pyruvate plus malate-dependent ROS production (32-, 96-, 5-fold). This specific rate of mGPDH-dependent ROS production was also exceedingly higher (28-, 66-, 22-fold) compared to that in BAT. mGPDH-dependent ROS production was localized to the dehydrogenase+CoQ and complex III, the latter being the highest in all mitochondria but BAT. Our results demonstrate high efficiency of mGPDH-dependent ROS production in mammalian mitochondria with a low content of mGPDH and suggest its endogenous inhibition in BAT.
- MeSH
- antimycin A farmakologie MeSH
- glycerolfosfátdehydrogenasa metabolismus MeSH
- hnědá tuková tkáň metabolismus MeSH
- jaterní mitochondrie účinky léků metabolismus MeSH
- křečci praví MeSH
- krysa rodu Rattus MeSH
- kyselina jantarová metabolismus MeSH
- kyselina pyrohroznová metabolismus MeSH
- mitochondrie účinky léků metabolismus MeSH
- mozek metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- respirační komplex III metabolismus MeSH
- srdeční mitochondrie účinky léků metabolismus MeSH
- techniky in vitro MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antimycin A MeSH
- glycerolfosfátdehydrogenasa MeSH
- kyselina jantarová MeSH
- kyselina pyrohroznová MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH
- respirační komplex III MeSH
Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(-/-) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).
- Klíčová slova
- Brown adipose tissue mitochondria, Cold acclimation, Glycerol-3-phosphate dehydrogenase, Reactive oxygen species, Succinate, Uncoupling protein 1,
- MeSH
- elektronová paramagnetická rezonance MeSH
- glycerolfosfáty farmakologie MeSH
- guanosindifosfát farmakologie MeSH
- hnědá tuková tkáň metabolismus MeSH
- imunoblotting MeSH
- iontové kanály genetika metabolismus MeSH
- karbonylkyanid-p-trifluormethoxyfenylhydrazon farmakologie MeSH
- kyselina jantarová farmakologie MeSH
- kyselina pyrohroznová farmakologie MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie účinky léků metabolismus fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- nízká teplota MeSH
- peroxid vodíku metabolismus MeSH
- protonové ionofory farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- spotřeba kyslíku účinky léků MeSH
- superoxidy metabolismus MeSH
- uncoupling protein 1 MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alpha-glycerophosphoric acid MeSH Prohlížeč
- glycerolfosfáty MeSH
- guanosindifosfát MeSH
- iontové kanály MeSH
- karbonylkyanid-p-trifluormethoxyfenylhydrazon MeSH
- kyselina jantarová MeSH
- kyselina pyrohroznová MeSH
- mitochondriální proteiny MeSH
- peroxid vodíku MeSH
- protonové ionofory MeSH
- reaktivní formy kyslíku MeSH
- superoxidy MeSH
- Ucp1 protein, mouse MeSH Prohlížeč
- uncoupling protein 1 MeSH
Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH oxidase. Since it acts as a potent inhibitor in studies with neutrophils and macrophages, no inhibitory effect can often be found in non-phagocyte cells. In our experiments, apocynin even stimulated reactive oxygen species (ROS) production by vascular fibroblasts. Even when added to macrophages, apocynin initially caused an increase in ROS production. The inhibition of ROS formation followed, suggesting that in the presence of leukocyte myeloperoxidase and hydrogen peroxide, apocynin is converted to another compound. Apocynin pre-activated with H2O2 and horseradish peroxidase (HRP) inhibited ROS production immediately. In non-phagocytes, apocynin stimulated ROS production and no inhibition was observed even after 60 min. Apocynin treated with H2O2 and HRP, however, decreased ROS production in the same manner as in macrophages. The stimulatory effect on ROS production can be abolished by tiron and superoxide dismutase (SOD), suggesting that superoxide was the produced species. The effect of apocynin was inhibited by diphenylene iodinium (DPI), a non-scavenging NADPH oxidase inhibitor. It can be summarized that apocynin stimulates cell superoxide production. In the presence of peroxidase and hydrogen peroxide, however, it is converted into another compound that acts as an inhibitor of superoxide production. It strongly suggests that under conditions in vivo, apocynin can have opposite effects on phagocytes and non-phagocyte cells. It acts as an inhibitor of phagocyte NADPH oxidase but also as a ROS production stimulator in non-phagocyte cells.
- MeSH
- acetofenony farmakologie MeSH
- antioxidancia farmakologie MeSH
- aorta účinky léků metabolismus MeSH
- fagocyty enzymologie MeSH
- fibroblasty účinky léků metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- NADPH-oxidasy antagonisté a inhibitory MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetofenony MeSH
- acetovanillone MeSH Prohlížeč
- antioxidancia MeSH
- inhibitory enzymů MeSH
- NADPH-oxidasy MeSH
- reaktivní formy kyslíku MeSH
Overproduction of reactive oxygen species (ROS) has been implicated in a range of pathologies. Mitochondrial flavin dehydrogenases glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH) represent important ROS source, but the mechanism of electron leak is still poorly understood. To investigate the ROS production by the isolated dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements and hydrogen peroxide production studies by Amplex Red fluorescence, and luminol luminescence in combination with oxygraphy revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q as the site of ROS production in the case of mGPDH. Distinct mechanism of ROS production by the two dehydrogenases is also apparent from induction of ROS generation by ferricyanide which is unique for mGPDH. Furthermore, using native electrophoretic systems, we demonstrated that mGPDH associates into homooligomers as well as high molecular weight supercomplexes, which represent native forms of mGPDH in the membrane. By this approach, we also directly demonstrated that isolated mGPDH itself as well as its supramolecular assemblies are all capable of ROS production.
- Klíčová slova
- 2,6-dichlorophenolindophenol, 2-n-heptyl-4-hydroxyquinoline N-oxide, AA, BAT, CoQ, DCPIP, E.C. 1.1.5.3, FeCN, GP, HAR, HQNO, HRP, In-gel ROS detection, MXT, Mitochondrial glycerol-3-phosphate dehydrogenase, OXPHOS, ROS, ROS production, SDH, Supercomplex, antimycin A, brown adipose tissue, coenzyme Q, ferricyanide, potassium hexacyanoferrate(III), hexaammineruthenium(III) chloride, horseradish peroxidase, mGPDH, mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase, myxothiazol, oxidative phosphorylation, reactive oxygen species, sn-glycerol-3-phosphate, succinate dehydrogenase,
- MeSH
- ferrikyanidy metabolismus MeSH
- glycerolfosfátdehydrogenasa chemie metabolismus MeSH
- glycerolfosfáty metabolismus MeSH
- krysa rodu Rattus MeSH
- mitochondrie enzymologie metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- savci MeSH
- sukcinátdehydrogenasa chemie metabolismus MeSH
- transport elektronů * MeSH
- ubichinon metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferrikyanidy MeSH
- glycerolfosfátdehydrogenasa MeSH
- glycerolfosfáty MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH
- sukcinátdehydrogenasa MeSH
- ubichinon MeSH
Isolated defects of mitochondrial ATPase due to diminished biosynthesis of the enzyme represent new class of severe mitochondrial diseases of nuclear origin. The primary cause of decreased cellular content of ATPase appears to be a problem in assembly of the F1 catalytic part of the enzyme. With the aim to elucidate how the low ATPase content affects mitochondrial energy provision and ROS production, we have investigated fibroblasts from patients with ATPase decrease to 10-30%. Measurements of cellular respiration showed pronounced decrease in ATPase capacity for basal respiration, mitochondrial ATP synthesis was decreased to 26-33%. Cytofluorometric analysis using TMRM revealed altered discharge of mitochondrial membrane potential (DeltaPsim) in patient cells, which was 20 mV increased at state 3-ADP. Analysis of ROS production by CM-H2DCFDA demonstrated 2-fold increase in ROS production in patient cells compared to controls. ROS production rate was sensitive to uncoupler (FCCP) and thus apparently related to increased DeltaPsim. Our studies clearly demonstrate that low ATPase content and decreased mitochondrial ATP production lead to high values of DeltaPsim and are associated with activation of ROS generation by the mitochondrial respiratory chain. In conclusion, both the energetic deprivation and increased oxidative stress are important components of the pathogenic mechanism of ATPase disorders.
- MeSH
- adenosintrifosfát biosyntéza MeSH
- adenosintrifosfatasy nedostatek MeSH
- energetický metabolismus * MeSH
- kultivované buňky MeSH
- lidé MeSH
- membránové potenciály MeSH
- mitochondrie metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- adenosintrifosfatasy MeSH
- reaktivní formy kyslíku MeSH
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.
- MeSH
- antimycin A analogy a deriváty farmakologie MeSH
- buněčné dýchání MeSH
- elektronová paramagnetická rezonance MeSH
- ethidium analogy a deriváty chemie MeSH
- ferrikyanidy farmakologie MeSH
- glycerolfosfátdehydrogenasa metabolismus MeSH
- glycerolfosfáty metabolismus MeSH
- hnědá tuková tkáň účinky léků enzymologie ultrastruktura MeSH
- křečci praví MeSH
- mitochondrie účinky léků enzymologie metabolismus MeSH
- reaktivní formy kyslíku analýza metabolismus MeSH
- respirační komplex III metabolismus MeSH
- spotřeba kyslíku MeSH
- transport elektronů MeSH
- ubichinon metabolismus MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antimycin A MeSH
- antimycin MeSH Prohlížeč
- dihydroethidium MeSH Prohlížeč
- ethidium MeSH
- ferrikyanidy MeSH
- glycerolfosfátdehydrogenasa MeSH
- glycerolfosfáty MeSH
- hexacyanoferrate III MeSH Prohlížeč
- reaktivní formy kyslíku MeSH
- respirační komplex III MeSH
- ubichinon MeSH
Reactive oxygen species (ROS) originating from mitochondria are perceived as a factor contributing to cell aging and means have been sought to attenuate ROS formation with the aim of extending the cell lifespan. Silybin and dehydrosilybin, two polyphenolic compounds, display a plethora of biological effects generally ascribed to their known antioxidant capacity. When investigating the cytoprotective effects of these two compounds in the primary cell cultures of neonatal rat cardiomyocytes, we noted the ability of dehydrosilybin to de-energize the cells by monitoring JC-1 fluorescence. Experiments evaluating oxygen consumption and membrane potential revealed that dehydrosilybin uncouples the respiration of isolated rat heart mitochondria albeit with a much lower potency than synthetic uncouplers. Furthermore, dehydrosilybin revealed a very high potency in suppressing ROS formation in isolated rat heart mitochondria with IC(50) = 0.15 μM. It is far more effective than its effect in a purely chemical system generating superoxide or in cells capable of oxidative burst, where the IC(50) for dehydrosilybin exceeds 50 μM. Dehydrosilybin also attenuated ROS formation caused by rotenone in the primary cultures of neonatal rat cardiomyocytes. We infer that the apparent uncoupler-like activity of dehydrosilybin is the basis of its ROS modulation effect in neonatal rat cardiomyocytes and leads us to propose a hypothesis on natural ischemia preconditioning by dietary polyphenols.
- MeSH
- analýza rozptylu MeSH
- benzimidazoly MeSH
- fluorescenční barviva MeSH
- inhibiční koncentrace 50 MeSH
- karbocyaniny MeSH
- kardiomyocyty metabolismus MeSH
- krysa rodu Rattus MeSH
- mitochondrie metabolismus MeSH
- molekulární struktura MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rotenon toxicita MeSH
- silymarin chemie farmakologie MeSH
- spotřeba kyslíku účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine MeSH Prohlížeč
- benzimidazoly MeSH
- dehydrosilybin MeSH Prohlížeč
- fluorescenční barviva MeSH
- karbocyaniny MeSH
- reaktivní formy kyslíku MeSH
- rotenon MeSH
- silymarin MeSH
- MeSH
- imunita rostlin * MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce MeSH
- zpětná vazba fyziologická * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
Enhanced production of superoxide radicals by nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase in the brain and/or kidney of salt hypertensive Dahl rats has been proposed to participate in the pathogenesis of this form of experimental hypertension. Most information was obtained in young Dahl salt-sensitive (DS) rats subjected to high salt intake prior to sexual maturation. Therefore, the aim of our study was to investigate whether salt hypertension induced in adult DS rats is also accompanied with a more pronounced oxidative stress in the brain or kidney as compared to Dahl salt-resistant (DR) controls. NADPH oxidase activity as well as the content of thiobarbituric acid-reactive substances (TBARS) and conjugated dienes (oxidative index), which indicate a degree of lipid peroxidation, were evaluated in two brain regions (containing either hypothalamic paraventricular nucleus or rostral ventrolateral medulla) as well as in renal medulla and cortex. High salt intake induced hypertension in DS rats but did not modify blood pressure in DR rats. DS and DR rats did not differ in NADPH oxidase-dependent production of ROS, TBARS content or oxidative index in either part of the brain. In addition, high-salt diet did not change significantly any of these brain parameters. In contrast, the enhanced NADPH oxidase-mediated ROS production (without significant signs of increased lipid peroxidation) was detected in the renal medulla of salt hypertensive DS rats. Our findings suggest that there are no signs of enhanced oxidative stress in the brain of adult Dahl rats with salt hypertension induced in adulthood.
- MeSH
- hypertenze chemicky indukované metabolismus MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- kuchyňská sůl * MeSH
- ledviny účinky léků metabolismus MeSH
- mozek metabolismus MeSH
- orgánová specificita účinky léků MeSH
- oxidační stres účinky léků MeSH
- potkani inbrední Dahl MeSH
- reaktivní formy kyslíku metabolismus MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kuchyňská sůl * MeSH
- reaktivní formy kyslíku MeSH
With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants' growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•-) and hydroxyl (OH-)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.
- Klíčová slova
- ROS, ROS scavenging, abiotic stress, antioxidants, global climate change, signal transduction,
- MeSH
- fyziologický stres fyziologie MeSH
- klimatické změny MeSH
- lidé MeSH
- peroxidace lipidů fyziologie MeSH
- poškození DNA fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostliny metabolismus MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH