BACKGROUND AND AIMS: A targeted enrichment NGS approach was used to construct the phylogeny of Amomum Roxb. (Zingiberaceae). Phylogenies based on hundreds of nuclear genes, the whole plastome and the rDNA cistron were compared with an ITS-based phylogeny. Trends in genome size (GS) evolution were examined, chromosomes were counted and the geographical distribution of phylogenetic lineages was evaluated. METHODS: In total, 92 accessions of 54 species were analysed. ITS was obtained for 79 accessions, 37 accessions were processed with Hyb-Seq and sequences from 449 nuclear genes, the whole cpDNA, and the rDNA cistron were analysed using concatenation, coalescence and supertree approaches. The evolution of absolute GS was analysed in a phylogenetic and geographical context. The chromosome numbers of 12 accessions were counted. KEY RESULTS: Four groups were recognised in all datasets though their mutual relationships differ among datasets. While group A (A. subulatum and A. petaloideum) is basal to the remaining groups in the nuclear gene phylogeny, in the cpDNA topology it is sister to group B (A. repoeense and related species) and, in the ITS topology, it is sister to group D (the Elettariopsis lineage). The former Elettariopsis makes a monophyletic group. There is an increasing trend in GS during evolution. The largest GS values were found in group D in two tetraploid taxa, A. cinnamomeum and A. aff. biphyllum (both 2n = 96 chromosomes). The rest varied in GS (2C = 3.54-8.78 pg) with a constant chromosome number 2n = 48. There is a weak connection between phylogeny, GS and geography in Amomum. CONCLUSIONS: Amomum consists of four groups, and the former Elettariopsis is monophyletic. Species in this group have the largest GS. Two polyploids were found and GS greatly varied in the rest of Amomum.
- Klíčová slova
- Chromosome counts, Elettariopsis, Hyb-Seq, ITS, Polyploidy, cpDNA,
- MeSH
- Amomum * genetika MeSH
- délka genomu MeSH
- DNA chloroplastová MeSH
- DNA rostlinná genetika MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- ribozomální DNA genetika MeSH
- zázvorníkovité * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA chloroplastová MeSH
- DNA rostlinná MeSH
- ribozomální DNA MeSH
Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2-5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12-90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.
- Klíčová slova
- Hyb-Seq, Pleurothallidinae, genome size evolution, partial endoreplication, phylogenetic generalized least squares, repetitive elements,
- MeSH
- chromozomy rostlin genetika MeSH
- délka genomu genetika MeSH
- DNA chloroplastová genetika MeSH
- DNA rostlinná genetika MeSH
- endoreduplikace genetika MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný genetika MeSH
- karyotypizace MeSH
- molekulární evoluce * MeSH
- Orchidaceae genetika MeSH
- průtoková cytometrie MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA chloroplastová MeSH
- DNA rostlinná MeSH
The diatom genus Orthoseira Thwaites (Bacillariophyta) is a ubiquitous taxon in aerial diatom assemblages, with species found globally. Cylindrical cell shape and radial symmetry of this genus has led to its historical placement in the Coscinodiscophyceae ('radial centric' diatoms), but its systematic relationships have remained uncertain. We present a five-gene phylogeny, based on nuclear (nSSU rDNA) and chloroplast (rbcL, psbC, psbA, and psaB) genes to determine the phylogenetic placement of Orthoseira among the diatoms. The concatenated multi-gene phylogenies and nSSU-only gene tree demonstrate that Orthoseira is deeply embedded within a clade of the Mediophyceae ('multipolar centric' diatoms). Throughout all phylogenetic analyses, Orthoseira was shown to be sister to the genera Terpsinoë and Hydrosera. Through comparison of topologies reflecting competing hypotheses about the placement of Orthoseira, it was determined that the hypothesis that Orthoseira, represented here by O. dendroteres and O. roeseana, is a member of the Melosirales should be rejected. Therefore, lack of morphological similarity between Hydrosera, Orthoseira, and Terpsinoë is hypothesized to be the result of changes in habitat preferences that lead to an ancient divergence event between the Orthoseirales and the Hydrosera, Terpsinoë clade.
- Klíčová slova
- Chaetocerotophycidae, Mediophyceae, Orthoseirales, aerophilic., maximum likelihood, terrestrial,
- MeSH
- DNA chloroplastová chemie genetika MeSH
- DNA řas chemie genetika MeSH
- fylogeneze * MeSH
- proteiny chloroplastové genetika MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 18S genetika MeSH
- rozsivky klasifikace genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- DNA chloroplastová MeSH
- DNA řas MeSH
- proteiny chloroplastové MeSH
- ribozomální DNA MeSH
- RNA ribozomální 18S MeSH
BACKGROUND AND AIMS: The origin of different cytotypes by autopolyploidy may be an important mechanism in plant diversification. Although cryptic autopolyploids probably comprise the largest fraction of overlooked plant diversity, our knowledge of their origin and evolution is still rather limited. Here we study the presumed autopolyploid aggregate of Aster amellus, which encompasses diploid and hexaploid cytotypes. Although the cytotypes of A. amellus are not morphologically distinguishable, previous studies showed spatial segregation and limited gene flow between them, which could result in different evolutionary trajectories for each cytotype. METHODS: We combine macroevolutionary, microevolutionary and niche modelling tools to disentangle the origin and the demographic history of the cytotypes, using chloroplast and nuclear markers in a dense population sampling in central Europe. KEY RESULTS: Our results revealed a segregation between diploid and hexaploid cytotypes in the nuclear genome, where each cytotype represents a monophyletic lineage probably homogenized by concerted evolution. In contrast, the chloroplast genome showed intermixed connections between the cytotypes, which may correspond to shared ancestral relationships. Phylogeny, demographic analyses and ecological niche modelling supported an ongoing differentiation of the cytotypes, where the hexaploid cytotype is experiencing a demographic expansion and niche differentiation with respect to its diploid relative. CONCLUSIONS: The two cytotypes may be considered as two different lineages at the onset of their evolutionary diversification. Polyploidization led to the occurrence of hexaploids, which expanded and changed their ecological niche.
- MeSH
- Aster genetika MeSH
- biologická evoluce * MeSH
- biologické modely MeSH
- DNA chloroplastová analýza MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- genetické markery MeSH
- mezerníky ribozomální DNA analýza MeSH
- polyploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- DNA chloroplastová MeSH
- genetické markery MeSH
- mezerníky ribozomální DNA MeSH
Chloroplasts are key organelles in the management of oxygen in algae and plants and are therefore crucial for all living beings that consume oxygen. Chloroplasts typically contain a circular DNA molecule with nucleus-independent replication and heredity. Using "palindrome analyser" we performed complete analyses of short inverted repeats (S-IRs) in all chloroplast DNAs (cpDNAs) available from the NCBI genome database. Our results provide basic parameters of cpDNAs including comparative information on localization, frequency, and differences in S-IR presence. In a total of 2,565 cpDNA sequences available, the average frequency of S-IRs in cpDNA genomes is 45 S-IRs/per kbp, significantly higher than that found in mitochondrial DNA sequences. The frequency of S-IRs in cpDNAs generally decreased with S-IR length, but not for S-IRs 15, 22, 24, or 27 bp long, which are significantly more abundant than S-IRs with other lengths. These results point to the importance of specific S-IRs in cpDNA genomes. Moreover, comparison by Levenshtein distance of S-IR similarities showed that a limited number of S-IR sequences are shared in the majority of cpDNAs. S-IRs are not located randomly in cpDNAs, but are length-dependently enriched in specific locations, including the repeat region, stem, introns, and tRNA regions. The highest enrichment was found for 12 bp and longer S-IRs in the stem-loop region followed by 12 bp and longer S-IRs located before the repeat region. On the other hand, S-IRs are relatively rare in rRNA sequences and around introns. These data show nonrandom and conserved arrangements of S-IRs in chloroplast genomes.
- MeSH
- chloroplasty genetika MeSH
- DNA chloroplastová * MeSH
- fylogeneze MeSH
- genom chloroplastový MeSH
- introny MeSH
- molekulární evoluce MeSH
- obrácené repetice * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA chloroplastová * MeSH
BACKGROUND AND AIMS: The 'orchid-like' bladderworts ( Utricularia ) comprise 15 species separated into two sections: Orchidioides and Iperua . These robust and mostly epiphytic species were originally grouped within the section Orchidioides by the first taxonomical systems. These species were later split into two sections when sect. Iperua was proposed. Due to the lack of strong evidence based on a robust phylogenetic perspective, this study presents a phylogenetic proposal based on four different DNA sequences (plastid and nuclear) and morphology to test the monophyly of the two sections. METHODS: In comparison with all previous phylogenetic studies, the largest number of species across the sections was covered: 11 species from sections Orchidioides and Iperua with 14 species as an external group. Maximum likelihood and Bayesian inferences were applied to DNA sequences of rps16 , trnL-F , matK , the internal transcribed spacer (ITS) and three morphological characters: (1) the crest of the corolla; (2) the primary organs in the embryo; and (3) tubers. Additionally, a histochemical analysis of the stolons and tubers is presented from an evolutionary perspective. KEY RESULTS: The analyses showed the paraphyly of sect. Iperua , since Utricularia humboldtii is more related to the clade of sect. Orchidioides . Utricularia cornigera is grouped in the sect. Iperua clade based on chloroplast DNA sequences, but it is nested to sect. Orchidioides according to ITS dataset. Morphological characters do not support the breaking up of the 'orchid-like' species into two sections, either. Moreover, the stolon-tuber systems of both sections serve exclusively for water storage, according to histological analyses. CONCLUSIONS: This study provides strong evidence, based on DNA sequences from two genomic compartments (plastid and nucleus) and morphology to group the Utricularia sect. Orchidioides into the sect. Iperua . The tubers are important adaptations for water storage and have been derived from stolons at least twice in the phylogenetic history of 'orchid-like' bladderworts.
- Klíčová slova
- Molecular phylogeny, Utricularia, anatomy, morphology, section Iperua, section Orchidioides, tuber,
- MeSH
- biologická evoluce * MeSH
- buněčné jádro genetika MeSH
- DNA chloroplastová genetika MeSH
- fylogeneze MeSH
- hlízy rostlin anatomie a histologie MeSH
- hluchavkotvaré anatomie a histologie klasifikace genetika MeSH
- rostlinné proteiny genetika MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA chloroplastová MeSH
- rostlinné proteiny MeSH
Gene flow between species may last a long time in plants. Reticulation inevitably causes difficulties in phylogenetic reconstruction. In this study, we looked into the genetic divergence and phylogeny of 20 Lilium species based on multilocus analyses of 8 genes of chloroplast DNA (cpDNA), the internally transcribed nuclear ribosomal DNA (nrITS) spacer and 20 loci extracted from the expressed sequence tag (EST) libraries of L. longiflorum Thunb. and L. formosanum Wallace. The phylogeny based on the combined data of the maternally inherited cpDNA and nrITS was largely consistent with the taxonomy of Lilium sections. This phylogeny was deemed the hypothetical species tree and uncovered three groups, i.e., Cluster A consisting of 4 taxa from the sections Pseudolirium and Liriotypus, Cluster B consisting of the 4 taxa from the sections Leucolirion, Archelirion and Daurolirion, and Cluster C comprising 10 taxa mostly from the sections Martagon and Sinomartagon. In contrast, systematic inconsistency occurred across the EST loci, with up to 19 genes (95%) displaying tree topologies deviating from the hypothetical species tree. The phylogenetic incongruence was likely attributable to the frequent genetic exchanges between species/sections, as indicated by the high levels of genetic recombination and the IMa analyses with the EST loci. Nevertheless, multilocus analysis could provide complementary information among the loci on the species split and the extent of gene flow between the species. In conclusion, this study not only detected frequent gene flow among Lilium sections that resulted in phylogenetic incongruence but also reconstructed a hypothetical species tree that gave insights into the nature of the complex relationships among Lilium species.
- MeSH
- DNA chloroplastová genetika MeSH
- fylogeneze MeSH
- lilie klasifikace genetika MeSH
- rostlinné geny * MeSH
- tok genů * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA chloroplastová MeSH
BACKGROUND AND AIMS: Knowledge of diploid phylogeny and ecogeography provide a foundation for understanding plant evolutionary history, diversification patterns and taxonomy. The genus Anthoxanthum (vernal grasses, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and poorly resolved evolutionary relationships. The aims of the study were to reveal: (1) evolutionary lineages of the diploid taxa and their genetic differentiation; (2) the past distribution of the rediscovered 'Mediterranean diploid'; and (3) possible migration routes of diploids in the Mediterranean. METHODS: A combined approach involving sequencing of two plastid regions ( trnL-trnF and rpl32-trnL ), nrDNA ITS, rDNA FISH analyses, climatic niche characterization and spatio-temporal modelling was used. KEY RESULTS: Among the examined diploid species, only two well-differentiated evolutionary lineages were recognized: Anthoxanthum gracile and A. alpinum . The other taxa - A. aristatum, A. ovatum, A. maderense and the 'Mediterranean diploid' - form a rather intermixed group based on the examined molecular data. In situ rDNA localization enabled identification of the ancestral Anthoxanthum karyotype, shared by A. gracile and two taxa from the crown group. For the studied taxa, ancestral location probabilities for six discrete geographical regions in the Mediterranean were proposed and likely scenarios of gradual expansion from them were suggested. Modelling past and present distributions shows that the 'Mediterranean diploid' has already been occurring in the same localities for 120 000 years. CONCLUSIONS: Highly congruent results were obtained and dated the origin and first diversification of Anthoxanthum to the Miocene. The later divergence probably took place in the Pleistocene and started polyploid evolution within the genus. The most recent diversification event is still occurring, and incomplete lineage sorting prevents full diversification of taxa at the molecular level, despite clear separation based on climatic niches. The 'Mediterranean diploid' is hypothesized to be a possible relic of the most recent common ancestor of Anthoxanthum due to their sharing of ancestral features.
- Klíčová slova
- Anthoxanthum, Mediterranean, incomplete lineage sorting, phylogeography, rDNA FISH,
- MeSH
- biologická evoluce * MeSH
- diploidie * MeSH
- DNA chloroplastová genetika MeSH
- fylogeneze * MeSH
- lipnicovité klasifikace MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Středomoří MeSH
- Názvy látek
- DNA chloroplastová MeSH
BACKGROUND AND AIMS: Rubus subgenus Rubus is a group of mostly apomictic and polyploid species with a complicated taxonomy and history of ongoing hybridization. The only polyploid series with prevailing sexuality is the series Glandulosi , although the apomictic series Discolores and Radula also retain a high degree of sexuality, which is influenced by environmental conditions and/or pollen donors. The aim of this study is to detect sources of genetic variability, determine the origin of apomictic taxa and validate microsatellite markers by cloning and sequencing. METHODS: A total of 206 individuals from two central European regions were genotyped for 11 nuclear microsatellite loci and the chloroplast trn L- trn F region. Microsatellite alleles were further sequenced in order to determine the exact repeat number and to detect size homoplasy due to insertions/deletions in flanking regions. KEY RESULTS: The results confirm that apomictic microspecies of ser. Radula are derived from crosses between sexual series Glandulosi and apomictic series Discolores , whereby the apomict acts as pollen donor. Each apomictic microspecies is derived from a single distinct genotype differing from the parental taxa, suggesting stabilized clonal reproduction. Intraspecific variation within apomicts is considerably low compared with sexual series Glandulosi , and reflects somatic mutation accumulation. While facultative apomicts produce clonal offspring, sexual species are the conduits of origin for new genetically different apomictic lineages. CONCLUSIONS: One of the main driving forces of evolution and speciation in the highly apomictic subgenus Rubus in central Europe is sexuality in the series Glandulosi . Palaeovegetation data suggest that initial hybridizations took place over different time periods in the two studied regions, and that the successful origin and spread of apomictic microspecies of the series Radula took place over several millennia. Additionally, the cloning and sequencing show that standard evaluations of microsatellite repeat numbers underestimate genetic variability considering homoplasy in allele size.
- Klíčová slova
- Apomixis, Rubus subgenus Rubus, hybridization, microevolution, microsatellites, polyploidy,
- MeSH
- apomixie * MeSH
- DNA chloroplastová genetika MeSH
- hybridizace genetická * MeSH
- mikrosatelitní repetice * MeSH
- mutace INDEL MeSH
- polyploidie MeSH
- Rubus klasifikace genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- DNA chloroplastová MeSH
Prasinophytes are a paraphyletic assemblage of nine heterogeneous lineages in the Chlorophyta clade of Archaeplastida. Until now, seven complete mitochondrial genomes have been sequenced from four prasinophyte lineages. Here, we report the mitochondrial genome of Pyramimonas parkeae, the first representative of the prasinophyte clade I. The circular-mapping molecule is 43,294 bp long, AT rich (68.8%), very compact and it comprises two 6,671 bp long inverted repeat regions. The gene content is slightly smaller than the gene-richest prasinophyte mitochondrial genomes. The single identified intron is located in the cytochrome c oxidase subunit 1 gene (cox1). Interestingly, two exons of cox1 are encoded on the same strand of DNA in the reverse order and the mature mRNA is formed by trans-splicing. The phylogenetic analysis using the data set of 6,037 positions assembled from 34 mtDNA-encoded proteins of 48 green algae and plants is not in compliance with the branching order of prasinophyte clades revealed on the basis of 18S rRNA genes and cpDNA-encoded proteins. However, the phylogenetic analyses based on all three genomic elements support the sister position of prasinophyte clades Pyramimonadales and Mamiellales.
- Klíčová slova
- cox1, intron, inverted repeats, phylogeny, trans-splicing,
- MeSH
- anotace sekvence MeSH
- Chlorophyta enzymologie genetika MeSH
- DNA chloroplastová genetika MeSH
- DNA rostlinná MeSH
- Euglenida genetika MeSH
- exony genetika MeSH
- fylogeneze * MeSH
- genetická heterogenita MeSH
- genom mitochondriální genetika MeSH
- introny genetika MeSH
- messenger RNA genetika MeSH
- mitochondriální DNA genetika MeSH
- mitochondriální proteiny klasifikace genetika MeSH
- respirační komplex IV genetika MeSH
- RNA ribozomální 18S genetika MeSH
- rostlinné proteiny klasifikace genetika MeSH
- rostliny genetika MeSH
- sekvence nukleotidů MeSH
- trans-splicing MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA chloroplastová MeSH
- DNA rostlinná MeSH
- messenger RNA MeSH
- mitochondriální DNA MeSH
- mitochondriální proteiny MeSH
- respirační komplex IV MeSH
- RNA ribozomální 18S MeSH
- rostlinné proteiny MeSH