Nejvíce citovaný článek - PubMed ID 10366881
Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.
The largest stable photosystem II (PSII) supercomplex in land plants (C2S2M2) consists of a core complex dimer (C2), two strongly (S2) and two moderately (M2) bound light-harvesting protein (LHCB) trimers attached to C2 via monomeric antenna proteins LHCB4-6. Recently, we have shown that LHCB3 and LHCB6, presumably essential for land plants, are missing in Norway spruce (Picea abies), which results in a unique structure of its C2S2M2 supercomplex. Here, we performed structure-function characterization of PSII supercomplexes in Arabidopsis (Arabidopsis thaliana) mutants lhcb3, lhcb6, and lhcb3 lhcb6 to examine the possibility of the formation of the "spruce-type" PSII supercomplex in angiosperms. Unlike in spruce, in Arabidopsis both LHCB3 and LHCB6 are necessary for stable binding of the M trimer to PSII core. The "spruce-type" PSII supercomplex was observed with low abundance only in the lhcb3 plants and its formation did not require the presence of LHCB4.3, the only LHCB4-type protein in spruce. Electron microscopy analysis of grana membranes revealed that the majority of PSII in lhcb6 and namely in lhcb3 lhcb6 mutants were arranged into C2S2 semi-crystalline arrays, some of which appeared to structurally restrict plastoquinone diffusion. Mutants without LHCB6 were characterized by fast induction of non-photochemical quenching and, on the contrary to the previous lhcb6 study, by only transient slowdown of electron transport between PSII and PSI. We hypothesize that these functional changes, associated with the arrangement of PSII into C2S2 arrays in thylakoids, may be important for the photoprotection of both PSI and PSII upon abrupt high-light exposure.
- MeSH
- Arabidopsis genetika metabolismus MeSH
- fotosystém II (proteinový komplex) genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny vázající chlorofyl genetika metabolismus MeSH
- smrk metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- Lhcb6 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- proteiny vázající chlorofyl MeSH
The photosynthetic machinery of plants can acclimate to changes in light conditions by balancing light-harvesting between the two photosystems (PS). This acclimation response is induced by the change in the redox state of the plastoquinone pool, which triggers state transitions through activation of the STN7 kinase and subsequent phosphorylation of light-harvesting complex II (LHCII) proteins. Phosphorylation of LHCII results in its association with PSI (state 2), whereas dephosphorylation restores energy allocation to PSII (state 1). In addition to state transition regulation by phosphorylation, we have recently discovered that plants lacking the chloroplast acetyltransferase NSI are also locked in state 1, even though they possess normal LHCII phosphorylation. This defect may result from decreased lysine acetylation of several chloroplast proteins. Here, we compared the composition of wild type (wt), stn7 and nsi thylakoid protein complexes involved in state transitions separated by Blue Native gel electrophoresis. Protein complex composition and relative protein abundances were determined by LC-MS/MS analyses using iBAQ quantification. We show that despite obvious mechanistic differences leading to defects in state transitions, no major differences were detected in the composition of PSI and LHCII between the mutants. Moreover, both stn7 and nsi plants show retarded growth and decreased PSII capacity under fluctuating light as compared to wt, while the induction of non-photochemical quenching under fluctuating light was much lower in both nsi mutants than in stn7.
- Klíčová slova
- Arabidopsis, Light-harvesting complex, Lysine acetylation, Photosystem I, State transitions,
- MeSH
- aklimatizace * MeSH
- Arabidopsis genetika fyziologie MeSH
- chloroplasty metabolismus MeSH
- chromatografie kapalinová MeSH
- fosforylace MeSH
- fotosyntéza * MeSH
- fotosystém I (proteinový komplex) genetika metabolismus MeSH
- fotosystém II (proteinový komplex) genetika metabolismus MeSH
- mutace MeSH
- mutantní proteiny metabolismus MeSH
- oxidace-redukce MeSH
- plastochinon metabolismus MeSH
- světlosběrné proteinové komplexy genetika metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- fotosystém I (proteinový komplex) MeSH
- fotosystém II (proteinový komplex) MeSH
- mutantní proteiny MeSH
- plastochinon MeSH
- světlosběrné proteinové komplexy MeSH
Ferrochelatase (FeCh) is an essential enzyme catalyzing the synthesis of heme. Interestingly, in cyanobacteria, algae, and plants, FeCh possesses a conserved transmembrane chlorophyll a/b binding (CAB) domain that resembles the first and the third helix of light-harvesting complexes, including a chlorophyll-binding motif. Whether the FeCh CAB domain also binds chlorophyll is unknown. Here, using biochemical and radiolabeled precursor experiments, we found that partially inhibited activity of FeCh in the cyanobacterium Synechocystis PCC 6803 leads to overproduction of chlorophyll molecules that accumulate in the thylakoid membrane and, together with carotenoids, bind to FeCh. We observed that pigments bound to purified FeCh are organized in an energy-dissipative conformation and further show that FeCh can exist in vivo as a monomer or a dimer depending on its own activity. However, pigmented FeCh was purified exclusively as a dimer. Separately expressed and purified FeCH CAB domain contained a pigment composition similar to that of full-length FeCh and retained its quenching properties. Phylogenetic analysis suggested that the CAB domain was acquired by a fusion between FeCh and a single-helix, high light-inducible protein early in the evolution of cyanobacteria. Following this fusion, the FeCh CAB domain with a functional chlorophyll-binding motif was retained in all currently known cyanobacterial genomes except for a single lineage of endosymbiotic cyanobacteria. Our findings indicate that FeCh from Synechocystis exists mostly as a pigment-free monomer in cells but can dimerize, in which case its CAB domain creates a functional pigment-binding segment organized in an energy-dissipating configuration.
- Klíčová slova
- Synechocystis, carotenoid, chlorophyll, chloroplast, ferrochelatase, heme, light harvesting complex (LHC)-like proteins, membrane protein, photosynthesis, photosynthetic pigment, pigment binding, plant biochemistry,
- MeSH
- chlorofyl a metabolismus MeSH
- chlorofyl metabolismus MeSH
- dimerizace MeSH
- ferrochelatasa chemie metabolismus MeSH
- fylogeneze MeSH
- karotenoidy metabolismus MeSH
- konformace proteinů MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Synechocystis enzymologie MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- chlorophyll b MeSH Prohlížeč
- ferrochelatasa MeSH
- karotenoidy MeSH
- světlosběrné proteinové komplexy MeSH
We present proteomic, spectroscopic, and phylogenetic analysis of light-harvesting protein (Lhc) function in oleaginous Nannochloropsis oceanica (Eustigmatophyta, Stramenopila). N. oceanica utilizes Lhcs of multiple classes: Lhcr-type proteins (related to red algae LHCI), Lhcv (VCP) proteins (violaxanthin-containing Lhcs related to Lhcf/FCP proteins of diatoms), Lhcx proteins (related to Lhcx/LhcSR of diatoms and green algae), and Lhc proteins related to Red-CLH of Chromera velia. Altogether, 17 Lhc-type proteins of the 21 known from genomic data were found in our proteomic analyses. Besides Lhcr-type antennas, a RedCAP protein and a member of the Lhcx protein subfamily were found in association with Photosystem I. The free antenna fraction is formed by trimers of a mixture of Lhcs of varied origins (Lhcv, Lhcr, Lhcx, and relatives of Red-CLH). Despite possessing several proteins of the Red-CLH-type Lhc clade, N. oceanica is not capable of chromatic adaptation under the same conditions as the diatom Phaeodactylum tricornutum or C. velia. In addition, a naming scheme of Nannochloropsis Lhcs is proposed to facilitate further work.
- Klíčová slova
- Light harvesting, Thylakoid membrane, Vaucheriaxanthin, Violaxanthin–chlorophyll protein,
- MeSH
- fotosystém I (proteinový komplex) metabolismus MeSH
- fylogeneze MeSH
- Heterokontophyta genetika metabolismus MeSH
- spektrofotometrie ultrafialová MeSH
- světlosběrné proteinové komplexy chemie genetika metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosystém I (proteinový komplex) MeSH
- světlosběrné proteinové komplexy MeSH
Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions.
- Klíčová slova
- Blue/low light adaptation, chlorophyll a/c antenna, cryptophytes, growth stage, non-photochemical quenching, state transitions.,
- MeSH
- Cryptophyta růst a vývoj fyziologie MeSH
- fotochemické procesy * MeSH
- fotosyntéza MeSH
- oxid uhličitý metabolismus MeSH
- světlo MeSH
- transport elektronů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oxid uhličitý MeSH
Heme and chlorophyll (Chl) share a common biosynthetic pathway up to the branch point where magnesium chelatase and ferrochelatase (FeCH) insert either magnesium for Chl biosynthesis or ferrous iron for heme biosynthesis. A distinctive feature of FeCHs in cyanobacteria is their C-terminal extension, which forms a putative transmembrane segment containing a Chl-binding motif. We analyzed the deltaH324 strain of Synechocystis sp. strain PCC 6803, which contains a truncated FeCH enzyme lacking this C-terminal domain. Truncated FeCH was localized to the membrane fraction, suggesting that the C-terminal domain is not necessary for membrane association of the enzyme. Measurements of enzyme activity and complementation experiments revealed that the deltaH324 mutation dramatically reduced activity of the FeCH, which resulted in highly upregulated 5-aminolevulinic acid synthesis in the deltaH324 mutant, implying a direct role for heme in the regulation of flux through the pathway. Moreover, the deltaH324 mutant accumulated a large amount of protoporphyrin IX, and levels of Chl precursors were also significantly increased, suggesting that some, but not all, of the "extra" flux can be diverted down the Chl branch. Analysis of the recombinant full-length and truncated FeCHs demonstrated that the C-terminal extension is critical for activity of the FeCH and that it is strictly required for oligomerization of this enzyme. The observed changes in tetrapyrrole trafficking and the role of the C terminus in the functioning of FeCH are discussed.
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- biologické modely MeSH
- ferrochelatasa chemie genetika metabolismus MeSH
- imunoblotting MeSH
- kyselina aminolevulová metabolismus MeSH
- mutace MeSH
- protoporfyriny metabolismus MeSH
- rekombinantní proteiny chemie metabolismus MeSH
- Synechocystis enzymologie genetika metabolismus MeSH
- tetrapyrroly metabolismus MeSH
- western blotting MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- ferrochelatasa MeSH
- kyselina aminolevulová MeSH
- protoporfyriny MeSH
- protoporphyrin IX MeSH Prohlížeč
- rekombinantní proteiny MeSH
- tetrapyrroly MeSH