Nejvíce citovaný článek - PubMed ID 11875555
Flagellin perception is a keystone of pattern-triggered immunity in plants. The recognition of this protein by a plasma membrane (PM) receptor complex is the beginning of a signaling cascade that includes protein phosphorylation and the production of reactive oxygen species (ROS). In both Arabidopsis (Arabidopsis thaliana) seedlings and suspension cells, we found that treatment with flg22, a peptide corresponding to the most conserved domain of bacterial flagellin, caused a rapid and transient decrease in the level of phosphatidylinositol (PI) 4,5-bisphosphate along with a parallel increase in phosphatidic acid (PA). In suspension cells, inhibitors of either phosphoinositide-dependent phospholipases C (PLC) or diacylglycerol kinases (DGKs) inhibited flg22-triggered PA production and the oxidative burst. In response to flg22, receptor-like kinase-deficient fls2, bak1, and bik1 mutants (FLAGELLIN SENSITIVE 2, BRASSINOSTEROID INSENSITIVE 1-associated kinase 1, and BOTRYTIS-INDUCED KINASE 1, respectively) produced less PA than wild-type (WT) plants, whereas this response did not differ in NADPH oxidase-deficient rbohD (RESPIRATORY BURST OXIDASE HOMOLOG D) plants. Among the DGK-deficient lines tested, the dgk5.1 mutant produced less PA and less ROS after flg22 treatment compared with WT seedlings. In response to flg22, dgk5.1 plants showed lower callose accumulation and impaired resistance to Pseudomonas syringae pv. tomato DC3000 hrcC-. Transcriptomics revealed that the basal expression of defense-related genes was altered in dgk5.1 seedlings compared with the WT. A GFP-DGK5 fusion protein localized to the PM, where RBOHD and PLC2 (proteins involved in plant immunity) are also located. The role of DGK5 and its enzymatic activity in flagellin signaling and fine-tuning of early immune responses in plant-microbe interactions is discussed.
- MeSH
- Arabidopsis * metabolismus MeSH
- diacylglycerolkinasa genetika metabolismus MeSH
- flagelin farmakologie genetika MeSH
- imunita rostlin MeSH
- protein-serin-threoninkinasy MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- Pseudomonas syringae fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BIK1 protein, Arabidopsis MeSH Prohlížeč
- diacylglycerolkinasa MeSH
- flagelin MeSH
- protein-serin-threoninkinasy MeSH
- proteiny huseníčku * MeSH
- reaktivní formy kyslíku MeSH
Mitogen activated protein kinases (MAPKs) integrate elicitor perception with both early and late responses associated with plant defense and innate immunity. Much of the existing knowledge on the role of plant MAPKs in defense mechanisms against microbes stems from extensive research in the model plant Arabidopsis thaliana. In the present study, we investigated the involvement of barley (Hordeum vulgare) MPK3 in response to flagellin peptide flg22, a well-known bacterial elicitor. Using differential proteomic analysis we show that TALEN-induced MPK3 knock-out lines of barley (HvMPK3 KO) exhibit constitutive downregulation of defense related proteins such as PR proteins belonging to thaumatin family and chitinases. Further analyses showed that the same protein families were less prone to flg22 elicitation in HvMPK3 KO plants compared to wild types. These results were supported and validated by chitinase activity analyses and immunoblotting for HSP70. In addition, differential proteomes correlated with root hair phenotypes and suggested tolerance of HvMPK3 KO lines to flg22. In conclusion, our study points to the specific role of HvMPK3 in molecular and root hair phenotypic responses of barley to flg22.
- Klíčová slova
- HvMPK3, PR proteins, TALEN, barley, chitinases, flagellin, proteomics, root hairs,
- Publikační typ
- časopisecké články MeSH
Most plants grow and develop by taking up nutrients from the soil while continuously under threat from foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory, we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata. We identified an early whole-genome duplication in the family as source for carnivory-associated genes. Recruitment of genes to the trap from the root especially was a major mechanism in the evolution of carnivory, supported by family-specific duplications. Still, these genomes belong to the gene poorest land plants sequenced thus far, suggesting reduction of selective pressure on different processes, including non-carnivorous nutrient acquisition. Our results show how non-carnivorous plants evolved into the most skillful green hunters on the planet.
- Klíčová slova
- Droseraceae, WRKY transcription factors, gene loss, jasmonate signaling, neofunctionalization, tissue-specific genes, transposon classification, whole-genome duplications,
- MeSH
- biologická evoluce * MeSH
- Droseraceae genetika MeSH
- genom rostlinný * MeSH
- masožravé rostliny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Transcription factors (TFs) play a major role in controlling gene expression by intricately regulating diverse biological processes such as growth and development, the response to external stimuli and the activation of defense responses. The systematic identification and classification of TF genes are essential to gain insight into their evolutionary history, biological roles, and regulatory networks. In this study, we performed a global mining and characterization of hop TFs and their involvement in Citrus bark cracking viroid CBCVd infection by employing a digital gene expression analysis. Our systematic analysis resulted in the identification of a total of 3,818 putative hop TFs that were classified into 99 families based on their conserved domains. A phylogenetic analysis classified the hop TFs into several subgroups based on a phylogenetic comparison with reference TF proteins from Arabidopsis thaliana providing glimpses of their evolutionary history. Members of the same subfamily and subgroup shared conserved motif compositions. The putative functions of the CBCVd-responsive hop TFs were predicted using their orthologous counterparts in A. thaliana. The analysis of the expression profiling of the CBCVd-responsive hop TFs revealed a massive differential modulation, and the expression of the selected TFs was validated using qRT-PCR. Together, the comprehensive integrated analysis in this study provides better insights into the TF regulatory networks associated with CBCVd infections in the hop, and also offers candidate TF genes for improving the resistance in hop against viroids.
- Klíčová slova
- hop stunt disease, management, transcriptional reprogramming, viroid pathogenesis,
- MeSH
- fylogeneze MeSH
- Humulus klasifikace genetika imunologie virologie MeSH
- kůra rostlin imunologie virologie MeSH
- nemoci rostlin genetika imunologie virologie MeSH
- rostlinné proteiny genetika imunologie MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory genetika imunologie MeSH
- viroidy genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
- transkripční faktory MeSH
BACKGROUND: Microbial-associated molecular patterns activate several MAP kinases, which are major regulators of the innate immune response in Arabidopsis thaliana that induce large-scale changes in gene expression. Here, we determine whether microbial-associated molecular pattern-triggered gene expression involves modifications at the chromatin level. RESULTS: Histone acetylation and deacetylation are major regulators of microbial-associated molecular pattern-triggered gene expression and implicate the histone deacetylase HD2B in the reprogramming of defence gene expression and innate immunity. The MAP kinase MPK3 directly interacts with and phosphorylates HD2B, thereby regulating the intra-nuclear compartmentalization and function of the histone deacetylase. CONCLUSIONS: By studying a number of gene loci that undergo microbial-associated molecular pattern-dependent activation or repression, our data reveal a mechanistic model for how protein kinase signaling directly impacts chromatin reprogramming in plant defense.
- MeSH
- Arabidopsis imunologie MeSH
- chromatin fyziologie MeSH
- flagelin imunologie MeSH
- fosforylace MeSH
- fyziologický stres MeSH
- histondeacetylasy metabolismus MeSH
- histony metabolismus MeSH
- imunita rostlin * MeSH
- mitogenem aktivované proteinkinasy kinas metabolismus MeSH
- přirozená imunita MeSH
- proteiny huseníčku metabolismus MeSH
- restrukturace chromatinu * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AtMPK3 protein, Arabidopsis MeSH Prohlížeč
- chromatin MeSH
- flagelin MeSH
- histondeacetylasy MeSH
- histony MeSH
- mitogenem aktivované proteinkinasy kinas MeSH
- proteiny huseníčku MeSH
Arabidopsis MPK4 and MPK6 are implicated in different signalling pathways responding to diverse external stimuli. This was recently correlated with transcriptomic profiles of Arabidopsis mpk4 and mpk6 mutants, and thus it should be reflected also on the level of constitutive proteomes. Therefore, we performed a shot gun comparative proteomic analysis of Arabidopsis mpk4 and mpk6 mutant roots. We have used bioinformatic tools and propose several new proteins as putative MPK4 and MPK6 phosphorylation targets. Among these proteins in the mpk6 mutant were important modulators of development such as CDC48A and phospholipase D alpha 1. In the case of the mpk4 mutant transcriptional reprogramming might be mediated by phosphorylation and change in the abundance of mRNA decapping complex VCS. Further comparison of mpk4 and mpk6 root differential proteomes showed differences in the composition and regulation of defense related proteins. The mpk4 mutant showed altered abundances of antioxidant proteins. The examination of catalase activity in response to oxidative stress revealed that this enzyme might be preferentially regulated by MPK4. Finally, we proposed developmentally important proteins as either directly or indirectly regulated by MPK4 and MPK6. These proteins contribute to known phenotypic defects in the mpk4 and mpk6 mutants.
- MeSH
- Arabidopsis enzymologie genetika MeSH
- fosforylace MeSH
- fyziologický stres MeSH
- genová ontologie MeSH
- genový knockout MeSH
- katalasa metabolismus MeSH
- kořeny rostlin enzymologie genetika MeSH
- missense mutace MeSH
- mitogenem aktivované proteinkinasy genetika MeSH
- peroxidasa metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteom metabolismus MeSH
- proteomika MeSH
- receptory pro aktivovanou kinasu C metabolismus MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
- Názvy látek
- AtMPK4 protein, Arabidopsis MeSH Prohlížeč
- katalasa MeSH
- mitogenem aktivované proteinkinasy MeSH
- MPK6 protein, Arabidopsis MeSH Prohlížeč
- peroxidasa MeSH
- proteiny huseníčku MeSH
- proteom MeSH
- RACK1 protein, Arabidopsis MeSH Prohlížeč
- receptory pro aktivovanou kinasu C MeSH
- REM1 protein, Arabidopsis MeSH Prohlížeč
The nodulin/glutamine synthetase-like protein (NodGS) that we identified proteomically in Arabidopsis thaliana is a fusion protein composed of an N-terminal amidohydrolase domain that shares homology with nodulins and a C-terminal domain of prokaryotic glutamine synthetase type I. The protein is homologous to the FluG protein, a morphogenetic factor in fungi. Although genes encoding NodGS homologues are present in many plant genomes, their products have not yet been characterized. The Arabidopsis NodGS was present in an oligomeric form of ~700-kDa, mainly in the cytosol, and to a lesser extent in the microsomal membrane fraction. The oligomeric NodGS was incorporated into large heterogeneous protein complexes >700 kDa and partially co-immunoprecipitated with γ-tubulin. In situ and in vivo microscopic analyses revealed a NodGS signal in the cytoplasm, with endomembranes, particularly in the perinuclear area. NodGS had no detectable glutamine synthetase activity. Downregulation of NodGS by RNAi resulted in plants with a short main root, reduced meristematic activity and disrupted development of the root cap. Y2H analysis and publicly available microarray data indicated a role for NodGS in biotic stress signalling. We found that flagellin enhanced the expression of the NodGS protein, which was then preferentially localized in the nuclear periphery. Our results point to a role for NodGS in root morphogenesis and microbial elicitation. These data might help in understanding the family of NodGS/FluG-like fusion genes that are widespread in prokaryotes, fungi and plants.
- MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- flagelin genetika metabolismus MeSH
- glutaminsynthetasa genetika metabolismus fyziologie MeSH
- kořeny rostlin genetika růst a vývoj metabolismus MeSH
- membránové proteiny genetika metabolismus fyziologie MeSH
- morfogeneze fyziologie MeSH
- proteiny huseníčku genetika metabolismus fyziologie MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika metabolismus fyziologie MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flagelin MeSH
- glutaminsynthetasa MeSH
- membránové proteiny MeSH
- nodulin MeSH Prohlížeč
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH