Nejvíce citovaný článek - PubMed ID 12447544
Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells
BACKGROUND: The plant hormone auxin is a major coordinator of plant growth and development in response to diverse environmental signals, including nutritional conditions. Sole ammonium (NH4+) nutrition is one of the unique growth-suppressing conditions for plants. Therefore, the quest to understand NH4+-mediated developmental defects led us to analyze auxin metabolism. RESULTS: Indole-3-acetic acid (IAA), the most predominant natural auxin, accumulates in the leaves and roots of mature Arabidopsis thaliana plants grown on NH4+, but not in the root tips. We found changes at the expressional level in reactions leading to IAA biosynthesis and deactivation in different tissues. Finally, NH4+ nutrition would facilitate the formation of inactive oxidized IAA as the final product. CONCLUSIONS: NH4+-mediated accelerated auxin turnover rates implicate transient and local IAA peaks. A noticeable auxin pattern in tissues correlates with the developmental adaptations of the short and highly branched root system of NH4+-grown plants. Therefore, the spatiotemporal distribution of auxin might be a root-shaping signal specific to adjust to NH4+-stress conditions.
- Klíčová slova
- Ammonium nutrition, Arabidopsis thaliana, Auxin conjugation, Auxin degradation, Auxin synthesis, Root development,
- MeSH
- amoniové sloučeniny metabolismus MeSH
- Arabidopsis metabolismus MeSH
- časoprostorová analýza MeSH
- fyziologický stres MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- metabolismus MeSH
- oxidace-redukce MeSH
- tkáňová distribuce MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amoniové sloučeniny MeSH
- indoleacetic acid MeSH Prohlížeč
- kyseliny indoloctové MeSH
Plants, like other multicellular organisms, survive through a delicate balance between growth and defense against pathogens. Salicylic acid (SA) is a major defense signal in plants, and the perception mechanism as well as downstream signaling activating the immune response are known. Here, we identify a parallel SA signaling that mediates growth attenuation. SA directly binds to A subunits of protein phosphatase 2A (PP2A), inhibiting activity of this complex. Among PP2A targets, the PIN2 auxin transporter is hyperphosphorylated in response to SA, leading to changed activity of this important growth regulator. Accordingly, auxin transport and auxin-mediated root development, including growth, gravitropic response, and lateral root organogenesis, are inhibited. This study reveals how SA, besides activating immunity, concomitantly attenuates growth through crosstalk with the auxin distribution network. Further analysis of this dual role of SA and characterization of additional SA-regulated PP2A targets will provide further insights into mechanisms maintaining a balance between growth and defense.
- Klíčová slova
- NPR1, PIN, PP2A, auxin, auxin transport, gravitropism, immunity, phosphorylation, protein phosphatase 2A, salicylic acid,
- MeSH
- Arabidopsis růst a vývoj fyziologie MeSH
- imunita rostlin MeSH
- kořeny rostlin růst a vývoj metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- proteinfosfatasa 2 metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina salicylová MeSH
- kyseliny indoloctové MeSH
- PIN2 protein, Arabidopsis MeSH Prohlížeč
- PP2A protein, Arabidopsis MeSH Prohlížeč
- proteinfosfatasa 2 MeSH
- proteiny huseníčku MeSH
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
- Klíčová slova
- auxin, auxin distribution, auxin signalling, auxin transport, direct visualization, indirect visualization, receptor, sensor,
- MeSH
- Arabidopsis metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- vývoj rostlin fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny indoloctové MeSH
Apical dominance is one of the fundamental developmental phenomena in plant biology, which determines the overall architecture of aerial plant parts. Here we show apex decapitation activated competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels, and dormancy and initiation status of axillary buds. Auxin flow was manipulated by lateral stem wounds or chemically by auxin efflux inhibitors 2,3,5-triiodobenzoic acid (TIBA), 1-N-naphtylphtalamic acid (NPA), or protein synthesis inhibitor cycloheximide (CHX) treatments, which served to interfere with axillary bud competition. Redirecting auxin flow to different points influenced which bud formed the outgrowing and dominant shoot. The obtained results proved that competition between upper and lower axillary buds as secondary auxin sources is based on the same auxin canalization principle that operates between the shoot apex and axillary bud.
- MeSH
- biologický transport MeSH
- hrách setý účinky léků genetika růst a vývoj MeSH
- kyseliny indoloctové farmakologie MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin farmakologie MeSH
- rostlinné proteiny genetika MeSH
- stonky rostlin účinky léků genetika růst a vývoj MeSH
- výhonky rostlin účinky léků genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
BACKGROUND: Auxin binding protein 1 (ABP1) is a putative auxin receptor and its function is indispensable for plant growth and development. ABP1 has been shown to be involved in auxin-dependent regulation of cell division and expansion, in plasma-membrane-related processes such as changes in transmembrane potential, and in the regulation of clathrin-dependent endocytosis. However, the ABP1-regulated downstream pathway remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: Using auxin transport assays and quantitative analysis of cellular morphology we show that ABP1 regulates auxin efflux from tobacco BY-2 cells. The overexpression of ABP1can counterbalance increased auxin efflux and auxin starvation phenotypes caused by the overexpression of PIN auxin efflux carrier. Relevant mechanism involves the ABP1-controlled vesicle trafficking processes, including positive regulation of endocytosis of PIN auxin efflux carriers, as indicated by fluorescence recovery after photobleaching (FRAP) and pharmacological manipulations. CONCLUSIONS/SIGNIFICANCE: The findings indicate the involvement of ABP1 in control of rate of auxin transport across plasma membrane emphasizing the role of ABP1 in regulation of PIN activity at the plasma membrane, and highlighting the relevance of ABP1 for the formation of developmentally important, PIN-dependent auxin gradients.
- MeSH
- Arabidopsis cytologie metabolismus MeSH
- buněčné linie MeSH
- FRAP MeSH
- konfokální mikroskopie MeSH
- kyseliny indoloctové metabolismus MeSH
- modulátory membránového transportu metabolismus MeSH
- receptory buněčného povrchu biosyntéza metabolismus MeSH
- rostlinné proteiny biosyntéza metabolismus MeSH
- tabák cytologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- auxin-binding protein 1 MeSH Prohlížeč
- endoplasmic reticulum auxin-binding protein 4, Zea mays MeSH Prohlížeč
- kyseliny indoloctové MeSH
- modulátory membránového transportu MeSH
- receptory buněčného povrchu MeSH
- rostlinné proteiny MeSH
The molecular basis of cellular auxin transport is still not fully understood. Although a number of carriers have been identified and proved to be involved in auxin transport, their regulation and possible activity of as yet unknown transporters remain unclear. Nevertheless, using single-cell-based systems it is possible to track the course of auxin accumulation inside cells and to specify and quantify some auxin transport parameters. The synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are generally considered to be suitable tools for auxin transport studies because they are transported specifically via either auxin influx or efflux carriers, respectively. Our results indicate that NAA can be metabolized rapidly in tobacco BY-2 cells. The predominant metabolite has been identified as NAA glucosyl ester and it is shown that all NAA metabolites were retained inside the cells. This implies that the transport efficiency of auxin efflux transporters is higher than previously assumed. By contrast, the metabolism of 2,4-D remained fairly weak. Moreover, using data on the accumulation of 2,4-D measured in the presence of auxin transport inhibitors, it is shown that 2,4-D is also transported by efflux carriers. These results suggest that 2,4-D is a promising tool for determining both auxin influx and efflux activities. Based on the accumulation data, a mathematical model of 2,4-D transport at a single-cell level is proposed. Optimization of the model provides estimates of crucial transport parameters and, together with its validation by successfully predicting the course of 2,4-D accumulation, it confirms the consistency of the present concept of cellular auxin transport.
- MeSH
- biologický transport MeSH
- kultivované buňky MeSH
- kyselina 2,4-dichlorfenoxyoctová chemie metabolismus MeSH
- kyseliny indoloctové chemie metabolismus MeSH
- naftaleny chemie metabolismus MeSH
- regulátory růstu rostlin chemie metabolismus MeSH
- tabák chemie cytologie metabolismus MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina 2,4-dichlorfenoxyoctová MeSH
- kyseliny indoloctové MeSH
- naftaleny MeSH
- naphthalene MeSH Prohlížeč
- regulátory růstu rostlin MeSH
The phytohormone auxin is transported through the plant body either via vascular pathways or from cell to cell by specialized polar transport machinery. This machinery consists of a balanced system of passive diffusion combined with the activities of auxin influx and efflux carriers. Synthetic auxins that differ in the mechanisms of their transport across the plasma membrane together with polar auxin transport inhibitors have been used in many studies on particular auxin carriers and their role in plant development. However, the exact mechanism of action of auxin efflux and influx inhibitors has not been fully elucidated. In this report, the mechanism of action of the auxin influx inhibitors (1-naphthoxyacetic acid (1-NOA), 2-naphthoxyacetic acid (2-NOA), and 3-chloro-4-hydroxyphenylacetic acid (CHPAA)) is examined by direct measurements of auxin accumulation, cellular phenotypic analysis, as well as by localization studies of Arabidopsis thaliana L. auxin carriers heterologously expressed in Nicotiana tabacum L., cv. Bright Yellow cell suspensions. The mode of action of 1-NOA, 2-NOA, and CHPAA has been shown to be linked with the dynamics of the plasma membrane. The most potent inhibitor, 1-NOA, blocked the activities of both auxin influx and efflux carriers, whereas 2-NOA and CHPAA at the same concentration preferentially inhibited auxin influx. The results suggest that these, previously unknown, activities of putative auxin influx inhibitors regulate overall auxin transport across the plasma membrane depending on the dynamics of particular membrane vesicles.
- MeSH
- biologický transport účinky léků MeSH
- buněčná membrána účinky léků metabolismus MeSH
- buňky MeSH
- fenylacetáty farmakologie MeSH
- glykoláty farmakologie MeSH
- kyseliny indoloctové metabolismus MeSH
- tabák účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-naphthoxyacetic acid MeSH Prohlížeč
- 2-naphthoxyacetic acid MeSH Prohlížeč
- 3-chloro-4-hydroxyphenylacetic acid MeSH Prohlížeč
- fenylacetáty MeSH
- glykoláty MeSH
- kyseliny indoloctové MeSH
Phytotropins such as 1-N-naphthylphthalamic acid (NPA) strongly inhibit auxin efflux, but the mechanism of this inhibition remains unknown. Auxin efflux is also strongly decreased by the vesicle trafficking inhibitor brefeldin A (BFA). Using suspension-cultured interphase cells of the BY-2 tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line, we compared the effects of NPA and BFA on auxin accumulation and on the arrangement of the cytoskeleton and endoplasmic reticulum (ER). The inhibition of auxin efflux (stimulation of net accumulation) by both NPA and BFA occurred rapidly with no measurable lag. NPA had no observable effect on the arrangement of microtubules, actin filaments, or ER. Thus, its inhibitory effect on auxin efflux was not mediated by perturbation of the cytoskeletal system and ER. BFA, however, caused substantial alterations to the arrangement of actin filaments and ER, including a characteristic accumulation of actin in the perinuclear cytoplasm. Even at saturating concentrations, NPA inhibited net auxin efflux far more effectively than did BFA. Therefore, a proportion of the NPA-sensitive auxin efflux carriers may be protected from the action of BFA. Maximum inhibition of auxin efflux occurred at concentrations of NPA substantially below those previously reported to be necessary to perturb vesicle trafficking. We found no evidence to support recent suggestions that the action of auxin transport inhibitors is mediated by a general inhibition of vesicle-mediated protein traffic to the plasma membrane.
- MeSH
- biologický transport účinky léků MeSH
- brefeldin A farmakologie MeSH
- cytoplazmatické vezikuly účinky léků metabolismus MeSH
- cytoskelet účinky léků metabolismus MeSH
- endoplazmatické retikulum účinky léků metabolismus MeSH
- ftalimidy farmakologie MeSH
- kultivované buňky MeSH
- kyseliny indoloctové antagonisté a inhibitory metabolismus MeSH
- mikrofilamenta účinky léků metabolismus MeSH
- mikrotubuly účinky léků metabolismus MeSH
- regulátory růstu rostlin farmakologie MeSH
- tabák cytologie účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alpha-naphthylphthalamic acid MeSH Prohlížeč
- brefeldin A MeSH
- ftalimidy MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH