Most cited article - PubMed ID 14757230
Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes
The acylated Repeats in ToXins (RTX) leukotoxins, the adenylate cyclase toxin (CyaA) or α-hemolysin (HlyA), bind β2 integrins of leukocytes but also penetrate cells lacking these receptors. We show that the indoles of conserved tryptophans in the acylated segments, W876 of CyaA and W579 of HlyA, are crucial for β2 integrin-independent membrane penetration. Substitutions of W876 by aliphatic or aromatic residues did not affect acylation, folding, or the activities of CyaA W876L/F/Y variants on cells expressing high amounts of the β2 integrin CR3. However, toxin activity of CyaA W876L/F/Y on cells lacking CR3 was strongly impaired. Similarly, a W579L substitution selectively reduced HlyA W579L cytotoxicity towards cells lacking β2 integrins. Intriguingly, the W876L/F/Y substitutions increased the thermal stability (Tm) of CyaA by 4 to 8 °C but locally enhanced the accessibility to deuteration of the hydrophobic segment and of the interface of the two acylated loops. W876Q substitution (showing no increase in Tm), or combination of W876F with a cavity-filling V822M substitution (this combination decreasing the Tm closer to that of CyaA), yielded a milder defect of toxin activity on erythrocytes lacking CR3. Furthermore, the activity of CyaA on erythrocytes was also selectively impaired when the interaction of the pyrrolidine of P848 with the indole of W876 was ablated. Hence, the bulky indoles of residues W876 of CyaA, or W579 of HlyA, rule the local positioning of the acylated loops and enable a membrane-penetrating conformation in the absence of RTX toxin docking onto the cell membrane by β2 integrins.
- Keywords
- RTX toxin, acylated segment, adenylate cyclase toxin, cytotoxicity, hydrogen/deuterium exchange, thermal stability, tryptophan residue, α-hemolysin, β(2) integrins,
- MeSH
- Adenylate Cyclase Toxin * chemistry genetics metabolism MeSH
- CD18 Antigens * genetics metabolism MeSH
- Bordetella pertussis MeSH
- Cell Membrane metabolism MeSH
- Erythrocytes metabolism MeSH
- Conserved Sequence MeSH
- Tryptophan * chemistry genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenylate Cyclase Toxin * MeSH
- CD18 Antigens * MeSH
- Tryptophan * MeSH
Pore-forming repeats in toxins (RTX) are key virulence factors of many Gram-negative pathogens. We have recently shown that the aromatic side chain of the conserved tyrosine residue 940 within the acylated segment of the RTX adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) plays a key role in target cell membrane interaction of the toxin. Therefore, we used a truncated CyaA-derived RTX719 construct to analyze the impact of Y940 substitutions on functional folding of the acylated segment of CyaA. Size exclusion chromatography combined with CD spectroscopy revealed that replacement of the aromatic side chain of Y940 by the side chains of alanine or proline residues disrupted the calcium-dependent folding of RTX719 and led to self-aggregation of the otherwise soluble and monomeric protein. Intriguingly, corresponding alanine substitutions of the conserved Y642, Y643 and Y639 residues in the homologous RtxA, HlyA and ApxIA hemolysins from Kingella kingae, Escherichia coli and Actinobacillus pleuropneumoniae, affected the membrane insertion, pore-forming (hemolytic) and cytotoxic capacities of these toxins only marginally. Activities of these toxins were impaired only upon replacement of the conserved tyrosines by proline residues. It appears, hence, that the critical role of the aromatic side chain of the Y940 residue is highly specific for the functional folding of the acylated domain of CyaA and determines its capacity to penetrate target cell membrane.
- MeSH
- Adenylate Cyclase Toxin genetics MeSH
- Bordetella bronchiseptica * genetics metabolism MeSH
- Bordetella pertussis * genetics metabolism MeSH
- Cell Membrane metabolism MeSH
- Hemolysis MeSH
- Bordetella Infections microbiology MeSH
- Humans MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- THP-1 Cells MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenylate Cyclase Toxin MeSH
The Bordetella adenylate cyclase toxin-hemolysin (CyaA) and the α-hemolysin (HlyA) of Escherichia coli belong to the family of cytolytic pore-forming Repeats in ToXin (RTX) cytotoxins. HlyA preferentially binds the αLβ2 integrin LFA-1 (CD11a/CD18) of leukocytes and can promiscuously bind and also permeabilize many other cells. CyaA bears an N-terminal adenylyl cyclase (AC) domain linked to a pore-forming RTX cytolysin (Hly) moiety, binds the complement receptor 3 (CR3, αMβ2, CD11b/CD18, or Mac-1) of myeloid phagocytes, penetrates their plasma membrane, and delivers the AC enzyme into the cytosol. We constructed a set of CyaA/HlyA chimeras and show that the CyaC-acylated segment and the CR3-binding RTX domain of CyaA can be functionally replaced by the HlyC-acylated segment and the much shorter RTX domain of HlyA. Instead of binding CR3, a CyaA1-710/HlyA411-1024 chimera bound the LFA-1 receptor and effectively delivered AC into Jurkat T cells. At high chimera concentrations (25 nm), the interaction with LFA-1 was not required for CyaA1-710/HlyA411-1024 binding to CHO cells. However, interaction with the LFA-1 receptor strongly enhanced the specific capacity of the bound CyaA1-710/HlyA411-1024 chimera to penetrate cells and deliver the AC enzyme into their cytosol. Hence, interaction of the acylated segment and/or the RTX domain of HlyA with LFA-1 promoted a productive membrane interaction of the chimera. These results help delimit residues 400-710 of CyaA as an "AC translocon" sufficient for translocation of the AC polypeptide across the plasma membrane of target cells.
- Keywords
- AC domain translocation, AC translocon, Bordetella pertussis, CyaA, Escherichia coli (E. coli), HlyA, RTX toxin, acylation, acyltransferase, bacterial toxin, complement receptor 3 (CR3,), fatty acid, fatty acyl, integrin, protein acylation, protein translocation,
- MeSH
- Adenylate Cyclase Toxin metabolism MeSH
- Lymphocyte Function-Associated Antigen-1 metabolism MeSH
- Bordetella * MeSH
- CHO Cells MeSH
- Cricetulus MeSH
- Cytosol metabolism MeSH
- Jurkat Cells MeSH
- Humans MeSH
- Macrophage-1 Antigen metabolism MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- THP-1 Cells MeSH
- Protein Transport MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenylate Cyclase Toxin MeSH
- Lymphocyte Function-Associated Antigen-1 MeSH
- Macrophage-1 Antigen MeSH
The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) of pathogenic Bordetellae delivers its adenylyl cyclase (AC) enzyme domain into the cytosol of host cells and catalyzes uncontrolled conversion of cellular ATP to cAMP. In parallel, the toxin forms small cation-selective pores that permeabilize target cell membrane and account for the hemolytic activity of CyaA on erythrocytes. The pore-forming domain of CyaA is predicted to consist of five transmembrane α-helices, of which the helices I, III, IV and V have previously been characterized. We examined here the α-helix II that is predicted to form between residues 529 to 549. Substitution of the glycine 531 residue by a proline selectively reduced the hemolytic capacity but did not affect the AC translocating activity of the CyaA-G531P toxin. In contrast, CyaA toxins with alanine 538 or 546 replaced by diverse residues were selectively impaired in the capacity to translocate the AC domain across cell membrane but remained fully hemolytic. Such toxins, however, formed pores in planar asolectin bilayer membranes with a very low frequency and with at least two different conducting states. The helix-breaking substitution of alanine 538 by a proline residue abolished the voltage-activated increase of membrane activity of CyaA in asolectin bilayers. These results reveal that the predicted α-helix comprising the residues 529 to 549 plays a key role in CyaA penetration into the target plasma membrane and pore-forming activity of the toxin.
- MeSH
- Adenylate Cyclase Toxin chemistry genetics toxicity MeSH
- Bordetella enzymology MeSH
- Cell Membrane drug effects MeSH
- Erythrocytes drug effects MeSH
- Hemolysis MeSH
- Protein Conformation, alpha-Helical MeSH
- Cells, Cultured MeSH
- Mice MeSH
- Sheep MeSH
- Amino Acid Substitution MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenylate Cyclase Toxin MeSH
The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) plays a crucial role in virulence and airway colonization capacity of the whooping cough agent Bordetella pertussis. The toxin penetrates target cell membranes and exhibits three distinct biological activities. A population of CyaA conformers forms small cation-selective pores that permeabilize the cell membrane for potassium efflux, which can provoke colloid-osmotic (oncotic) cell lysis. The other two activities are due to CyaA conformers that transiently form calcium influx conduits in the target cell membrane and translocate the adenylate cyclase (AC) enzyme into cytosol of cells. A fourth putative biological activity has recently been reported; an intrinsic phospholipase A (PLA) activity was claimed to be associated with the CyaA polypeptide and be involved in the mechanism of translocation of the AC enzyme polypeptide across cell membrane lipid bilayer. However, the conclusions drawn by the authors contradicted their own results and we show them to be erroneous. We demonstrate that highly purified CyaA is devoid of any detectable phospholipase A1 activity and that contrary to the published claims, the two putative conserved phospholipase A catalytic residues, namely the Ser606 and Asp1079 residues, are not involved in the process of membrane translocation of the AC domain of CyaA across target membranes.
- Keywords
- AC domain translocation, adenylate cyclase toxin, phospholipase A activity,
- MeSH
- Adenylate Cyclase Toxin metabolism toxicity MeSH
- Bordetella pertussis MeSH
- Cell Line MeSH
- Erythrocytes MeSH
- Phospholipases A metabolism MeSH
- Hemolysis MeSH
- Aspartic Acid MeSH
- Mice MeSH
- Sheep MeSH
- Serine MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenylate Cyclase Toxin MeSH
- Phospholipases A MeSH
- Aspartic Acid MeSH
- Serine MeSH
Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMβ₂) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3',5'-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.
- Keywords
- Bordetella, CD11b/CD18, adenylate cyclase toxin, cAMP, cell signaling, complement receptor 3, innate immunity, membrane pores, repeats-in-toxin, β2 integrins,
- MeSH
- Adenylate Cyclase Toxin chemistry MeSH
- Macrophages, Alveolar cytology MeSH
- Cyclic AMP chemistry MeSH
- Bordetella pertussis MeSH
- Dendritic Cells cytology MeSH
- Phagocytes chemistry MeSH
- Syk Kinase MeSH
- Humans MeSH
- Macrophage-1 Antigen MeSH
- Neutrophils cytology MeSH
- Protein Domains MeSH
- Signal Transduction * MeSH
- Protein Structure, Tertiary MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Adenylate Cyclase Toxin MeSH
- Cyclic AMP MeSH
- Syk Kinase MeSH
- Macrophage-1 Antigen MeSH
- SYK protein, human MeSH Browser
The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) translocates its adenylate cyclase (AC) enzyme domain into target cells in a step that depends on membrane cholesterol content. We thus examined what role in toxin activities is played by the five putative cholesterol recognition amino acid consensus (CRAC) motifs predicted in CyaA hemolysin moiety. CRAC-disrupting phenylalanine substitutions had no impact on toxin activities and these were not inhibited by free cholesterol, showing that the putative CRAC motifs are not involved in cholesterol binding. However, helix-breaking proline substitutions in these segments uncovered a structural role of the Y632, Y658, Y725 and Y738 residues in AC domain delivery and pore formation by CyaA. Substitutions of Y940 of the fifth motif, conserved in the acylated domains of related RTX toxins, did not impact on fatty-acylation of CyaA by CyaC and the CyaA-Y940F mutant was intact for toxin activities on erythrocytes and myeloid cells. However, the Y940A or Y940P substitutions disrupted the capacity of CyaA to insert into artificial lipid bilayers or target cell membranes. The aromatic ring of tyrosine 940 side chain thus appears to play a key structural role in molecular interactions that initiate CyaA penetration into target membranes.
- MeSH
- Adenylate Cyclase Toxin genetics metabolism MeSH
- Amino Acid Motifs MeSH
- Cell Membrane metabolism MeSH
- Cell Line MeSH
- Cholesterol metabolism MeSH
- Erythrocytes metabolism MeSH
- Macrophages metabolism MeSH
- DNA Mutational Analysis MeSH
- Mice MeSH
- Amino Acid Substitution MeSH
- Protein Transport MeSH
- Tyrosine genetics metabolism MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenylate Cyclase Toxin MeSH
- Cholesterol MeSH
- Tyrosine MeSH
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The 'AC to Hly-linking segment' thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins.
- MeSH
- Adenylate Cyclase Toxin chemistry genetics metabolism MeSH
- Adenylyl Cyclases chemistry genetics MeSH
- Cyclic AMP metabolism MeSH
- Bordetella pertussis chemistry pathogenicity MeSH
- Hemolysin Proteins genetics MeSH
- Humans MeSH
- Lipid Bilayers chemistry metabolism MeSH
- Perforin chemistry MeSH
- Cell Membrane Permeability drug effects MeSH
- Whooping Cough genetics microbiology pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenylate Cyclase Toxin MeSH
- Adenylyl Cyclases MeSH
- Cyclic AMP MeSH
- Hemolysin Proteins MeSH
- Lipid Bilayers MeSH
- Perforin MeSH
A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins.
- MeSH
- Actinobacillus pleuropneumoniae metabolism MeSH
- Adenylate Cyclase Toxin antagonists & inhibitors chemistry metabolism MeSH
- Bacterial Proteins antagonists & inhibitors chemistry metabolism MeSH
- Bordetella pertussis metabolism MeSH
- Cell Membrane metabolism MeSH
- Erythrocytes metabolism MeSH
- Hemolysis * MeSH
- Hemolysin Proteins antagonists & inhibitors chemistry metabolism MeSH
- Hexokinase MeSH
- Cells, Cultured MeSH
- Lipid Bilayers metabolism MeSH
- Macrophages MeSH
- Mice MeSH
- Osmotic Pressure MeSH
- Cell Membrane Permeability MeSH
- Pyridoxal Phosphate analogs & derivatives MeSH
- Rosaniline Dyes MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenylate Cyclase Toxin MeSH
- ApxI toxin, Bacteria MeSH Browser
- Bacterial Proteins MeSH
- coomassie Brilliant Blue MeSH Browser
- Hemolysin Proteins MeSH
- Hexokinase MeSH
- Lipid Bilayers MeSH
- pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid MeSH Browser
- Pyridoxal Phosphate MeSH
- Rosaniline Dyes MeSH
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca(2+) ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
- MeSH
- Amino Acid Motifs MeSH
- Bacterial Proteins chemistry genetics metabolism MeSH
- Bacterial Toxins chemistry genetics metabolism MeSH
- Gram-Negative Bacteria chemistry genetics metabolism MeSH
- Multigene Family * MeSH
- Gene Expression Regulation, Bacterial MeSH
- Protein Transport MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Bacterial Toxins MeSH