Nejvíce citovaný článek - PubMed ID 16452413
The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two β-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.
- MeSH
- antibakteriální látky dějiny metabolismus MeSH
- Arthrodermataceae genetika metabolismus MeSH
- beta-laktamy metabolismus MeSH
- dějiny 20. století MeSH
- fylogeneze MeSH
- geografická kartografie MeSH
- ježkovití metabolismus mikrobiologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus genetika metabolismus MeSH
- molekulární evoluce MeSH
- One Health MeSH
- peniciliny biosyntéza MeSH
- rezistence na methicilin genetika MeSH
- selekce (genetika) genetika MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Dánsko MeSH
- Evropa MeSH
- Nový Zéland MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta-laktamy MeSH
- peniciliny MeSH
Staphylococcus epidermidis is a leading opportunistic pathogen causing nosocomial infections that is notable for its ability to form a biofilm and for its high rates of antibiotic resistance. It serves as a reservoir of multiple antimicrobial resistance genes that spread among the staphylococcal population by horizontal gene transfer such as transduction. While phage-mediated transduction is well studied in Staphylococcus aureus, S. epidermidis transducing phages have not been described in detail yet. Here, we report the characteristics of four phages, 27, 48, 456, and 459, previously used for S. epidermidis phage typing, and the newly isolated phage E72, from a clinical S. epidermidis strain. The phages, classified in the family Siphoviridae and genus Phietavirus, exhibited an S. epidermidis-specific host range, and together they infected 49% of the 35 strains tested. A whole-genome comparison revealed evolutionary relatedness to transducing S. aureus phietaviruses. In accordance with this, all the tested phages were capable of transduction with high frequencies up to 10-4 among S. epidermidis strains from different clonal complexes. Plasmids with sizes from 4 to 19 kb encoding resistance to streptomycin, tetracycline, and chloramphenicol were transferred. We provide here the first evidence of a phage-inducible chromosomal island transfer in S. epidermidis Similarly to S. aureus pathogenicity islands, the transfer was accompanied by phage capsid remodeling; however, the interfering protein encoded by the island was distinct. Our findings underline the role of S. epidermidis temperate phages in the evolution of S. epidermidis strains by horizontal gene transfer, which can also be utilized for S. epidermidis genetic studies.IMPORTANCE Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. In this work, we provide a detailed description of transducing S. epidermidis phages. The high transduction frequencies of antimicrobial resistance plasmids and the first evidence of chromosomal island transfer emphasize the decisive role of S. epidermidis phages in attaining a higher pathogenic potential of host strains. To date, such importance has been attributed only to S. aureus phages, not to those of coagulase-negative staphylococci. This study also proved that the described transducing bacteriophages represent valuable genetic modification tools in S. epidermidis strains where other methods for gene transfer fail.
- Klíčová slova
- Staphylococcus epidermidis, antibiotic resistance, bacteriophages, horizontal gene transfer, pathogenicity islands, transduction,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- genomové ostrovy genetika MeSH
- lidé MeSH
- plazmidy genetika MeSH
- stafylokokové bakteriofágy klasifikace účinky léků genetika MeSH
- stafylokokové infekce mikrobiologie MeSH
- Staphylococcus epidermidis účinky léků virologie MeSH
- transdukce genetická * MeSH
- virulence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Free-living wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S.aureus lineages-many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S.aureus, respectively.
- Klíčová slova
- Staphylococcus aureus, clonal complex, coagulation, epidemiology, habitat, host adaptation, immune evasion cluster, laboratory, livestock, rat,
- MeSH
- antibakteriální látky farmakologie MeSH
- divoká zvířata mikrobiologie MeSH
- ekosystém MeSH
- faktory virulence genetika MeSH
- hemokoagulace MeSH
- methicilin farmakologie MeSH
- molekulární epidemiologie MeSH
- nos mikrobiologie MeSH
- potkani Sprague-Dawley MeSH
- stafylokokové infekce epidemiologie veterinární MeSH
- Staphylococcus aureus účinky léků genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
- Názvy látek
- antibakteriální látky MeSH
- faktory virulence MeSH
- methicilin MeSH
Panton-Valentine leucocidin (PVL)-positive methicillin-resistant Staphylococcus aureus (MRSA) strains cause life-threatening diseases. We present a draft genome sequence of PVL-positive MRSA sequence type 154 (ST154) strain NRL 08/001, isolated from a fatal case of necrotizing pneumonia. The genome consists of 2.9 Mb over 39 contigs and harbors novel composite island staphylococcal cassette chromosome mec element (SCCmec)-mercury composite type 2B&5.
- Publikační typ
- časopisecké články MeSH
Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.
- MeSH
- bakteriální geny * MeSH
- fosfolipasy metabolismus MeSH
- genom virový MeSH
- genomika metody MeSH
- hostitelská specificita MeSH
- metaloendopeptidasy metabolismus MeSH
- plazmidy genetika MeSH
- přenos genů horizontální MeSH
- přichycení viru MeSH
- stafylokokové bakteriofágy fyziologie ultrastruktura MeSH
- Staphylococcus virologie MeSH
- transdukce genetická * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- auR protein, Staphylococcus aureus MeSH Prohlížeč
- fosfolipasy MeSH
- metaloendopeptidasy MeSH