Nejvíce citovaný článek - PubMed ID 16698544
RNA kink-turns as molecular elbows: hydration, cation binding, and large-scale dynamics
RNA molecules play a key role in countless biochemical processes. RNA interactions, which are of highly diverse nature, are determined by the fact that RNA is a highly negatively charged polyelectrolyte, which leads to intimate interactions with an ion atmosphere. Although RNA molecules are formally single-stranded, canonical (Watson-Crick) duplexes are key components of folded RNAs. A double-stranded (ds) RNA is also important for the design of RNA-based nanostructures and assemblies. Despite the fact that the description of canonical dsRNA is considered the least problematic part of RNA modeling, the imperfect shape and flexibility of dsRNA can lead to imbalances in the simulations of larger RNAs and RNA-containing assemblies. We present a comprehensive set of molecular dynamics (MD) simulations of four canonical A-RNA duplexes. Our focus was directed toward the characterization of the influence of varying ion concentrations and of the size of the solvation box. We compared several water models and four RNA force fields. The simulations showed that the A-RNA shape was most sensitive to the RNA force field, with some force fields leading to a reduced inclination of the A-RNA duplexes. The ions and water models played a minor role. The effect of the box size was negligible, and even boxes with a small fraction of the bulk solvent outside the RNA hydration sphere were sufficient for the simulation of the dsRNA.
Kink-turns are highly bent internal loop motifs commonly found in the ribosome and other RNA complexes. They frequently act as binding sites for proteins and mediate tertiary interactions in larger RNA structures. Kink-turns have been a topic of intense research, but their elastic properties in the folded state are still poorly understood. Here we use extensive all-atom molecular dynamics simulations to parameterize a model of kink-turn in which the two flanking helical stems are represented by effective rigid bodies. Time series of the full set of six interhelical coordinates enable us to extract minimum energy shapes and harmonic stiffness constants for kink-turns from different RNA functional classes. The analysis suggests that kink-turns exhibit isotropic bending stiffness but are highly anisotropic with respect to lateral displacement of the stems. The most flexible lateral displacement mode is perpendicular to the plane of the static bend. These results may help understand the structural adaptation and mechanical signal transmission by kink-turns in complex natural and artificial RNA structures.
- MeSH
- konformace nukleové kyseliny MeSH
- ribozomy metabolismus MeSH
- RNA * chemie MeSH
- simulace molekulární dynamiky * MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA * MeSH
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
- MeSH
- DNA chemie MeSH
- katalýza MeSH
- konformace nukleové kyseliny * MeSH
- počítačová simulace MeSH
- RNA chemie MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA MeSH
- RNA MeSH
The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes.
- MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- motiv rozpoznávající RNA genetika MeSH
- mutageneze cílená MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- RNA metabolismus MeSH
- sestřihové faktory chemie genetika metabolismus MeSH
- simulace molekulární dynamiky MeSH
- substituce aminokyselin MeSH
- vazebná místa MeSH
- voda chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RBFOX1 protein, human MeSH Prohlížeč
- rekombinantní proteiny MeSH
- RNA MeSH
- sestřihové faktory MeSH
- voda MeSH
Riboswitches often occur in the 5'-untranslated regions of bacterial mRNA where they regulate gene expression. The preQ(1) riboswitch controls the biosynthesis of a hypermodified nucleoside queuosine in response to binding the queuosine metabolic intermediate. Structures of the ligand-bound and ligand-free states of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis were determined recently by X-ray crystallography. We used multiple, microsecond-long molecular dynamics simulations (29 μs in total) to characterize the structural dynamics of preQ(1) riboswitches in both states. We observed different stabilities of the stem in the bound and free states, resulting in different accessibilities of the ribosome-binding site. These differences are related to different stacking interactions between nucleotides of the stem and the associated loop, which itself adopts different conformations in the bound and free states. We suggest that the loop not only serves to bind preQ(1) but also transmits information about ligand binding from the ligand-binding pocket to the stem, which has implications for mRNA accessibility to the ribosome. We explain functional results obscured by a high salt crystallization medium and help to refine regions of disordered electron density, which demonstrates the predictive power of our approach. Besides investigating the functional dynamics of the riboswitch, we have also utilized this unique small folded RNA system for analysis of performance of the RNA force field on the μs time scale. The latest AMBER parmbsc0χ(OL3) RNA force field is capable of providing stable trajectories of the folded molecule on the μs time scale. On the other hand, force fields that are not properly balanced lead to significant structural perturbations on the sub-μs time scale, which could easily lead to inappropriate interpretation of the simulation data.
- MeSH
- bakteriální RNA chemie MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- riboswitch * MeSH
- simulace molekulární dynamiky * MeSH
- Thermoanaerobacter chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- bakteriální RNA MeSH
- riboswitch * MeSH
We present extensive explicit solvent molecular dynamics analysis of three RNA three-way junctions (3WJs) from the large ribosomal subunit: the 3WJ formed by Helices 90-92 (H90-H92) of 23S rRNA; the 3WJ formed by H42-H44 organizing the GTPase associated center (GAC) of 23S rRNA; and the 3WJ of 5S rRNA. H92 near the peptidyl transferase center binds the 3'-CCA end of amino-acylated tRNA. The GAC binds protein factors and stimulates GTP hydrolysis driving protein synthesis. The 5S rRNA binds the central protuberance and A-site finger (ASF) involved in bridges with the 30S subunit. The simulations reveal that all three 3WJs possess significant anisotropic hinge-like flexibility between their stacked stems and dynamics within the compact regions of their adjacent stems. The A-site 3WJ dynamics may facilitate accommodation of tRNA, while the 5S 3WJ flexibility appears to be essential for coordinated movements of ASF and 5S rRNA. The GAC 3WJ may support large-scale dynamics of the L7/L12-stalk region. The simulations reveal that H42-H44 rRNA segments are not fully relaxed and in the X-ray structures they are bent towards the large subunit. The bending may be related to L10 binding and is distributed between the 3WJ and the H42-H97 contact.
- MeSH
- archeální RNA chemie MeSH
- bakteriální RNA chemie MeSH
- Escherichia coli genetika MeSH
- fosfáty chemie MeSH
- Haloarcula marismortui genetika MeSH
- konformace nukleové kyseliny MeSH
- RNA ribozomální 23S chemie MeSH
- RNA ribozomální 5S chemie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- archeální RNA MeSH
- bakteriální RNA MeSH
- fosfáty MeSH
- RNA ribozomální 23S MeSH
- RNA ribozomální 5S MeSH
Helix 38 (H38) of the large ribosomal subunit, with a length of 110 A, reaches the small subunit through intersubunit bridge B1a. Previous cryo-EM studies revealed that the tip of H38 moves by more than 10 A from the non-ratcheted to the ratcheted state of the ribosome while mutational studies implicated a key role of flexible H38 in attenuation of translocation and in dynamical signaling between ribosomal functional centers. We investigate a region including the elbow-shaped kink-turn (Kt-38) in the Haloarcula marismortui archaeal ribosome, and equivalently positioned elbows in three eubacterial species, located at the H38 base. We performed explicit solvent molecular dynamics simulations on the H38 elbows in all four species. They are formed by at first sight unrelated sequences resulting in diverse base interactions but built with the same overall topology, as shown by X-ray crystallography. The elbows display similar fluctuations and intrinsic flexibilities in simulations indicating that the eubacterial H38 elbows are structural and dynamical analogs of archaeal Kt-38. We suggest that this structural element plays a pivotal role in the large motions of H38 and may act as fulcrum for the abovementioned tip motion. The directional flexibility inferred from simulations correlates well with the cryo-EM results.
- MeSH
- chlorid draselný chemie MeSH
- Deinococcus genetika MeSH
- elektronová kryomikroskopie MeSH
- Escherichia coli genetika MeSH
- Haloarcula marismortui genetika MeSH
- konformace nukleové kyseliny MeSH
- RNA ribozomální 23S chemie MeSH
- simulace molekulární dynamiky MeSH
- sodík chemie MeSH
- Thermus thermophilus genetika MeSH
- velké podjednotky ribozomu archebakteriální chemie MeSH
- velké podjednotky ribozomu bakteriální chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- chlorid draselný MeSH
- RNA ribozomální 23S MeSH
- sodík MeSH
Hybrid QM/MM methods combine the rigor of quantum mechanical (QM) calculations with the low computational cost of empirical molecular mechanical (MM) treatment allowing to capture dynamic properties to probe critical atomistic details of enzyme reactions. Catalysis by RNA enzymes (ribozymes) has only recently begun to be addressed with QM/MM approaches and is thus still a field under development. This review surveys methodology as well as recent advances in QM/MM applications to RNA mechanisms, including those of the HDV, hairpin, and hammerhead ribozymes, as well as the ribosome. We compare and correlate QM/MM results with those from QM and/or molecular dynamics (MD) simulations, and discuss scope and limitations with a critical eye on current shortcomings in available methodologies and computer resources. We thus hope to foster mutual appreciation and facilitate collaboration between experimentalists and theorists to jointly advance our understanding of RNA catalysis at an atomistic level.
- MeSH
- biofyzika metody MeSH
- fosfáty chemie MeSH
- fosforylace MeSH
- hořčík chemie MeSH
- katalýza MeSH
- konformace nukleové kyseliny MeSH
- kvantová teorie MeSH
- lidé MeSH
- molekulární modely MeSH
- počítačová simulace MeSH
- ribozomy chemie MeSH
- RNA katalytická chemie MeSH
- RNA virová chemie MeSH
- RNA chemie MeSH
- software MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fosfáty MeSH
- hammerhead ribozyme MeSH Prohlížeč
- hořčík MeSH
- RNA katalytická MeSH
- RNA virová MeSH
- RNA MeSH
Explicit solvent molecular dynamics simulations (in total almost 800 ns including locally enhanced sampling runs) were applied with different ion conditions and with two force fields (AMBER and CHARMM) to characterize typical geometries adopted by the flanking bases in the RNA kissing-loop complexes. We focus on flanking base positions in multiple x-ray and NMR structures of HIV-1 DIS kissing complexes and kissing complex from the large ribosomal subunit of Haloarcula marismortui. An initial x-ray open conformation of bulged-out bases in HIV-1 DIS complexes, affected by crystal packing, tends to convert to a closed conformation formed by consecutive stretch of four stacked purine bases. This is in agreement with those recent crystals where the packing is essentially avoided. We also observed variants of the closed conformation with three stacked bases, while nonnegligible populations of stacked geometries with bulged-in bases were detected, too. The simulation results reconcile differences in positions of the flanking bases observed in x-ray and NMR studies. Our results suggest that bulged-out geometries are somewhat more preferred, which is in accord with recent experiments showing that they may mediate tertiary contacts in biomolecular assemblies or allow binding of aminoglycoside antibiotics.
- MeSH
- chemické modely * MeSH
- dimerizace MeSH
- HIV-1 chemie genetika MeSH
- konformace nukleové kyseliny MeSH
- molekulární modely * MeSH
- párování bází genetika MeSH
- počátek transkripce * MeSH
- počítačová simulace MeSH
- RNA virová chemie MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA virová MeSH
Explicit solvent molecular dynamics (MD) was used to describe the intrinsic flexibility of the helix 42-44 portion of the 23S rRNA (abbreviated as Kt-42+rGAC; kink-turn 42 and GTPase-associated center rRNA). The bottom part of this molecule consists of alternating rigid and flexible segments. The first flexible segment (Hinge1) is the highly anharmonic kink of Kt-42. The second one (Hinge2) is localized at the junction between helix 42 and helices 43/44. The rigid segments are the two arms of helix 42 flanking the kink. The whole molecule ends up with compact helices 43/44 (Head) which appear to be modestly compressed towards the subunit in the Haloarcula marismortui X-ray structure. Overall, the helix 42-44 rRNA is constructed as a sophisticated intrinsically flexible anisotropic molecular limb. The leading flexibility modes include bending at the hinges and twisting. The Head shows visible internal conformational plasticity, stemming from an intricate set of base pairing patterns including dynamical triads and tetrads. In summary, we demonstrate how rRNA building blocks with contrasting intrinsic flexibilities can form larger architectures with highly specific patterns of preferred low-energy motions and geometries.
- MeSH
- archeální RNA chemie MeSH
- Haloarcula marismortui genetika MeSH
- ionty chemie MeSH
- konformace nukleové kyseliny MeSH
- konzervovaná sekvence MeSH
- molekulární modely * MeSH
- molekulární sekvence - údaje MeSH
- párování bází MeSH
- počítačová simulace MeSH
- pohyb těles MeSH
- RNA ribozomální 23S chemie MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- archeální RNA MeSH
- ionty MeSH
- RNA ribozomální 23S MeSH