Nejvíce citovaný článek - PubMed ID 18165802
In this study, lactic acid bacteria (LAB) isolation from fermented foods and molecular identification using magnetic bead technology were performed. And then exopolysaccharide (EPS) production possibility was tested in agar medium, and the positive ones were selected for the next step. The bacteria that could produce higher carbohydrate level were grown in MRS medium fortified with whey and pumpkin waste. In our study, 19 different LAB species were identified from fermented products collected from different places in Hatay (Türkiye) province. In molecular identification, universal primer pairs, p806R/p8FPL, and PEU7/DG74 were used for PCR amplification. After that, PCR products purified using paramagnetic bead technology were sequenced by the Sanger sequencing method. The dominant species, 23.8% of the isolates, were identified as Lactiplantibacillus plantarum. As a technological property of LAB, exopolysaccharide production capability of forty-two LAB isolate was tested in agar medium, and after eleven isolates were selected as positive. Two LAB (Latilactobacillus curvatus SHA2-3B and Loigolactobacillus coryniformis SHA6-3B) had higher EPS production capability when they were grown in MRS broth fortified with pumpkin waste and whey. The highest EPS content (1750 mg/L glucose equivalent) was determined in Loigolactobacillus coryniformis SHA6-3B grown in MRS broth fortified with 10% pumpkin waste. Besides the produced EPS samples were validated with FTIR and SEM methods.
- Klíčová slova
- Exopolysaccharide, Magnetic bead, Pumpkin waste, Sanger sequencing, Whey,
- MeSH
- bakteriální polysacharidy * biosyntéza metabolismus MeSH
- Cucurbita mikrobiologie MeSH
- fermentace MeSH
- fermentované potraviny * mikrobiologie MeSH
- fylogeneze MeSH
- kultivační média chemie MeSH
- Lactobacillales * izolace a purifikace klasifikace genetika metabolismus MeSH
- odpadní produkty * analýza MeSH
- potravinářská mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- syrovátka MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální polysacharidy * MeSH
- kultivační média MeSH
- odpadní produkty * MeSH
- RNA ribozomální 16S MeSH
Strongylid nematodes in large terrestrial herbivores such as great apes, equids, elephants, and humans tend to occur in complex communities. However, identification of all species within strongylid communities using traditional methods based on coproscopy or single nematode amplification and sequencing is virtually impossible. High-throughput sequencing (HTS) technologies provide opportunities to generate large amounts of sequence data and enable analyses of samples containing a mixture of DNA from multiple species/genotypes. We designed and tested an HTS approach for strain-level identification of gastrointestinal strongylids using ITS-2 metabarcoding at the MiSeq Illumina platform in samples from two free-ranging non-human primate species inhabiting the same environment, but differing significantly in their host traits and ecology. Although we observed overlapping of particular haplotypes, overall the studied primate species differed in their strongylid nematode community composition. Using HTS, we revealed hidden diversity in the strongylid nematode communities in non-human primates, more than one haplotype was found in more than 90% of samples and coinfections of more than one putative species occurred in 80% of samples. In conclusion, the HTS approach on strongylid nematodes, preferably using fecal samples, represents a time and cost-efficient way of studying strongylid communities and provides a resolution superior to traditional approaches.
- MeSH
- feces parazitologie MeSH
- genetická variace MeSH
- infekce hlísticemi řádu Strongylida genetika parazitologie MeSH
- koně genetika parazitologie MeSH
- nemoci koní genetika parazitologie MeSH
- rozptýlené repetitivní sekvence genetika MeSH
- Strongylida klasifikace genetika MeSH
- sympatrie MeSH
- taxonomické DNA čárové kódování * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The advantages of open-pollinated (OP) family testing over controlled crossing (i.e., structured pedigree) are the potential to screen and rank a large number of parents and offspring with minimal cost and efforts; however, the method produces inflated genetic parameters as the actual sibling relatedness within OP families rarely meets the half-sib relatedness assumption. Here, we demonstrate the unsurpassed utility of OP testing after shifting the analytical mode from pedigree- (ABLUP) to genomic-based (GBLUP) relationship using phenotypic tree height (HT) and wood density (WD) and genotypic (30k SNPs) data for 1126 38-year-old Interior spruce (Picea glauca (Moench) Voss x P. engelmannii Parry ex Engelm.) trees, representing 25 OP families, growing on three sites in Interior British Columbia, Canada. The use of the genomic realized relationship permitted genetic variance decomposition to additive, dominance, and epistatic genetic variances, and their interactions with the environment, producing more accurate narrow-sense heritability and breeding value estimates as compared to the pedigree-based counterpart. The impact of retaining (random folding) vs. removing (family folding) genetic similarity between the training and validation populations on the predictive accuracy of genomic selection was illustrated and highlighted the former caveats and latter advantages. Moreover, GBLUP models allowed breeding value prediction for individuals from families that were not included in the developed models, which was not possible with the ABLUP. Response to selection differences between the ABLUP and GBLUP models indicated the presence of systematic genetic gain overestimation of 35 and 63% for HT and WD, respectively, mainly caused by the inflated estimates of additive genetic variance and individuals' breeding values given by the ABLUP models. Extending the OP genomic-based models from single to multisite made the analysis applicable to existing OP testing programs.
- Klíčová slova
- Genetic variance decomposition, Interior spruce, Multienvironment, Open-pollinated families, Pedigree- and marker-based relationships,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The investigation of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of higher plant nuclear DNA. Since genome-wide characterization of repetitive elements is complicated by their high abundance and diversity, novel approaches based on massively-parallel sequencing are being adapted to facilitate the analysis. It has recently been demonstrated that the low-pass genome sequencing provided by a single 454 sequencing reaction is sufficient to capture information about all major repeat families, thus providing the opportunity for efficient repeat investigation in a wide range of species. However, the development of appropriate data mining tools is required in order to fully utilize this sequencing data for repeat characterization. RESULTS: We adapted a graph-based approach for similarity-based partitioning of whole genome 454 sequence reads in order to build clusters made of the reads derived from individual repeat families. The information about cluster sizes was utilized for assessing the proportion and composition of repeats in the genomes of two model species, Pisum sativum and Glycine max, differing in genome size and 454 sequencing coverage. Moreover, statistical analysis and visual inspection of the topology of the cluster graphs using a newly developed program tool, SeqGrapheR, were shown to be helpful in distinguishing basic types of repeats and investigating sequence variability within repeat families. CONCLUSIONS: Repetitive regions of plant genomes can be efficiently characterized by the presented graph-based analysis and the graph representation of repeats can be further used to assess the variability and evolutionary divergence of repeat families, discover and characterize novel elements, and aid in subsequent assembly of their consensus sequences.
- MeSH
- DNA rostlinná genetika MeSH
- genom rostlinný MeSH
- Glycine max genetika MeSH
- hrách setý genetika MeSH
- mapování chromozomů MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvenční analýza DNA * MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH