Most cited article - PubMed ID 18243383
Novel roles for genetically modified plants in environmental protection
Pollution by heavy metals (HM) represents a serious threat for both the environment and human health. Due to their elemental character, HM cannot be chemically degraded, and their detoxification in the environment mostly resides either in stabilization in situ or in their removal from the matrix, e.g., soil. For this purpose, phytoremediation, i.e., the application of plants for the restoration of a polluted environment, has been proposed as a promising green alternative to traditional physical and chemical methods. Among the phytoremediation techniques, phytoextraction refers to the removal of HM from the matrix through their uptake by a plant. It possesses considerable advantages over traditional techniques, especially due to its cost effectiveness, potential treatment of multiple HM simultaneously, no need for the excavation of contaminated soil, good acceptance by the public, the possibility of follow-up processing of the biomass produced, etc. In this review, we focused on three basic HM phytoextraction strategies that differ in the type of plant species being employed: natural hyperaccumulators, fast-growing plant species with high-biomass production and, potentially, plants genetically engineered toward a phenotype that favors efficient HM uptake and boosted HM tolerance. Considerable knowledge on the applicability of plants for HM phytoextraction has been gathered to date from both lab-scale studies performed under controlled model conditions and field trials using real environmental conditions. Based on this knowledge, many specific applications of plants for the remediation of HM-polluted soils have been proposed. Such studies often also include suggestions for the further processing of HM-contaminated biomass, therefore providing an added economical value. Based on the examples presented here, we recommend that intensive research be performed on the selection of appropriate plant taxa for various sets of conditions, environmental risk assessment, the fate of HM-enriched biomass, economical aspects of the process, etc.
Although stinging nettle (Urtica dioica) has been shown to reduce HM (heavy metal) content in soil, its wider phytoremediation potential has been neglected. Urtica dioica was cultivated in soils contaminated with HMs or polychlorinated biphenyls (PCBs). After four months, up to 33% of the less chlorinated biphenyls and 8% of HMs (Zn, Pb, Cd) had been removed. Bacteria were isolated from the plant tissue, with the endophytic bacteria Bacillus shackletonii and Streptomyces badius shown to have the most significant effect. These bacteria demonstrated not only benefits for plant growth, but also extreme tolerance to As, Zn and Pb. Despite these results, the native phytoremediation potential of nettles could be improved by biotechnologies. Transient expression was used to investigate the functionality of the most common constitutive promoter, CaMV 35S in Urtica dioica. This showed the expression of the CUP and bphC transgenes. Collectively, our findings suggest that remediation by stinging nettle could have a much wider range of applications than previously thought.
- MeSH
- Biodegradation, Environmental * MeSH
- Genetic Engineering methods MeSH
- Plants, Genetically Modified genetics metabolism MeSH
- Cadmium metabolism MeSH
- Soil Pollutants metabolism MeSH
- Lead metabolism MeSH
- Polychlorinated Biphenyls analysis metabolism MeSH
- Promoter Regions, Genetic * genetics MeSH
- Soil chemistry MeSH
- Gene Expression Regulation, Plant genetics MeSH
- Metals, Heavy analysis metabolism MeSH
- Urtica dioica genetics metabolism MeSH
- Zinc metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cadmium MeSH
- Soil Pollutants MeSH
- Lead MeSH
- Polychlorinated Biphenyls MeSH
- Soil MeSH
- Metals, Heavy MeSH
- Zinc MeSH
Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provide researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation.
- MeSH
- Biodegradation, Environmental * MeSH
- Phylogeny MeSH
- Isotope Labeling methods MeSH
- Environmental Pollutants metabolism MeSH
- Metagenomics methods trends MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Environmental Pollutants MeSH
- Carbon MeSH
The aim of this work was to construct transgenic plants with increased capabilities to degrade organic pollutants, such as polychlorinated biphenyls. The environmentally important gene of bacterial dioxygenase, the bphC gene, was chosen to clone into a plant of Nicotiana tabacum. The chosen bphC gene encodes 2,3-dihydroxybiphenyl-1,2-dioxygenase, which cleaves the aromatic ring of dihydroxybiphenyl, and we cloned it in fusion with the gene for β-glucuronidase (GUS), luciferase (LUC) or with a histidine tail. Several genetic constructs were designed and prepared and the possible expression of desired proteins in tobacco plants was studied by transient expression. We used genetic constructs successfully expressing dioxygenase's genes we used for preparation of transgenic tobacco plants by agrobacterial infection. The presence of transgenic DNA , mRNA and protein was determined in parental and the first filial generation of transgenic plants with the bphC gene. Properties of prepared transgenic plants will be further studied.
- Keywords
- 2,3-dihydroxybiphenyl-1,2-dioxygenase, Nicotiana tabacum, bphC, phytoremediation, transgenic plant,
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Biodegradation, Environmental MeSH
- Burkholderiaceae enzymology genetics MeSH
- Dioxygenases genetics metabolism MeSH
- Plants, Genetically Modified enzymology genetics metabolism MeSH
- Glucuronidase genetics metabolism MeSH
- Cloning, Molecular MeSH
- Luciferases genetics metabolism MeSH
- Polychlorinated Biphenyls metabolism MeSH
- Recombinant Fusion Proteins genetics metabolism MeSH
- Nicotiana enzymology genetics metabolism MeSH
- Green Fluorescent Proteins genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 2,3-dihydroxybiphenyl oxygenase MeSH Browser
- Bacterial Proteins MeSH
- Dioxygenases MeSH
- Glucuronidase MeSH
- Luciferases MeSH
- Polychlorinated Biphenyls MeSH
- Recombinant Fusion Proteins MeSH
- Green Fluorescent Proteins MeSH
Biosorption of metal ions may take place by different passive metal-sequestering processes such as ion exchange, complexation, physical entrapment, and inorganic microprecipitation or by a combination of these. To improve the biosorption capacity of the potential yeast biosorbent, short metal-binding NP peptides (harboring the CXXEE metal fixation motif of the bacterial Pb(2+)-transporting P1-type ATPases) were efficiently displayed and covalently anchored to the cell wall of Saccharomyces cerevisiae. These were fusions to the carboxyl-terminal part of the sexual adhesion glycoprotein alpha-agglutinin (AGalpha1Cp). Compared to yeast cells displaying the anchoring domain only, those having a surface display of NP peptides multiplied their Pb(2+) biosorption capacity from solutions containing a 75 to 300 microM concentration of the metal ion up to 5-fold. The S-type Pb(2+) biosorption isotherms, plus the presence of electron-dense deposits (with an average size of 80 by 240 nm, observed by transmission electron microscopy) strongly suggested that the improved biosorption potential of NP-displaying cells is due to the onset of microprecipitation of Pb species on the modified cell wall. The power of an improved capacity for Pb biosorption was also retained by the isolated cell walls containing NP peptides. Their Pb(2+) biosorption property was insensitive to the presence of a 3-fold molar excess of either Cd(2+) or Zn(2+). These results suggest that the biosorption mechanism can be specifically upgraded with microprecipitation by the engineering of the biosorbent with an eligible metal-binding peptide.
- MeSH
- Adenosine Triphosphatases genetics metabolism MeSH
- Agglutinins genetics metabolism MeSH
- Bacterial Proteins genetics metabolism MeSH
- Cadmium metabolism MeSH
- Membrane Transport Proteins genetics metabolism MeSH
- Lead metabolism MeSH
- Recombinant Fusion Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae enzymology metabolism MeSH
- Protein Binding MeSH
- Zinc metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphatases MeSH
- Agglutinins MeSH
- Bacterial Proteins MeSH
- Cadmium MeSH
- Membrane Transport Proteins MeSH
- Lead MeSH
- Recombinant Fusion Proteins MeSH
- Saccharomyces cerevisiae Proteins MeSH
- Zinc MeSH
PURPOSE: Polychlorinated biphenyls (PCBs) represent a large group of recalcitrant environmental pollutants, differing in the number of chlorine atoms bound to biphenyl ring. Due to their excellent technological properties, PCBs were used as heat-transfer media, for filling transformers and condensers, as paint additives, etc. With increasing knowledge of their toxicity, transfer to food chains and accumulation in living organisms, their production ended in most countries in the 1970s and in 1984 in the former Czechoslovakia. But even a quarter of century after the PCB production ceased, from contaminated areas, the volatile PCBs evaporate and contaminate much larger areas even at very distant parts of the world. For this reason, PCBs still represent a global problem. The main method of PCB removal from contaminated environment is at present the expensive incineration at high temperatures. With the aim of finding effective alternative approaches, we are studying biological methods for PCB removal from the environment. In this paper, we summarise 10 years of studies using long-term PCB-contaminated soil from a dumpsite in South Bohemia, targeted for the use of plants (phytoremediation) and their cooperation with microorganisms in the root zone (rhizoremediation). MATERIALS AND METHODS: Long-term contaminated soil from Lhenice dumpsite, more than hundred kilograms of homogenised material, was used in microcosms (pots and buckets), and field plots were established at the site. Tested plants include among others tobacco, black nightshade, horseradish, alfalfa and willow. Aseptic plant cell and tissue cultures were from the collection of the IOCB. Microorganisms were our own isolates. The paper summarises experiments done between 1998 and 2008 with real contaminated soil, both vegetated and non-vegetated. PCB analysis was performed by GC-ECD, metabolic products identified mostly using 2D-GC/MS-MS and synthetic standards, whereas molecular methods included quantitative PCR and sequencing. RESULTS: The soil was used both for preparation of field plots at the site and for greenhouse and laboratory tests in microcosms. The results include analyses of changes in PCB content in untreated and vegetated soil, PCB uptake and distribution in different parts of various plant species, analysis of products formed, identification and characterisation of cultivable and non-cultivable bacteria both in rhizosphere and in bulk soil. Different treatments and amendments were also tested. Experiments in real contaminated soil were accompanied by in vitro experiments using aseptic cultures of plant biomass, genetically modified (GM) plants and bacteria, to allow identification of players responsible for PCB metabolisation in soil. The time-span of the experiments allows extrapolating some of the results and drawing conclusions concerning the effectivity of exploitation of various plant species and treatments to remove PCBs from soils. DISCUSSION: The approach using plants proved to represent a viable alternative to costly incineration of PCB-contaminated soils. The recent studies using molecular methods show that plants are responsible for the composition of consortia of microorganisms present in their root zone, including those with ability to degrade the chlorinated aromatic compounds. CONCLUSIONS: In addition to uptake, accumulation and partial metabolisation of PCBs by plants, compounds produced by plants allow survival of microorganisms even in poor soils, serve as carbon and energy source, and can even induce the degradation pathways of different xenobiotics. Thus, the choice of proper plant species is crucial for effective cleaning of different polluted sites. Our study shows how the efficiency of PCB removal is dependent on the plant used. RECOMMENDATIONS AND PERSPECTIVES: The use of plants in biological remediation of different organic xenobiotics proved to be a useful approach. Further improvement can be expected by application of specifically tailored GM plants and use of selective conditions ensuring high remediation potential based on optimal composition of the soil microbial consortia designed for the needs of given site.
- MeSH
- Biodegradation, Environmental * MeSH
- Time Factors MeSH
- Plant Roots MeSH
- Soil Pollutants metabolism MeSH
- Polychlorinated Biphenyls chemistry metabolism MeSH
- Soil analysis MeSH
- Soil Microbiology MeSH
- Plants metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Soil Pollutants MeSH
- Polychlorinated Biphenyls MeSH
- Soil MeSH
DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [(13)C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase alpha subunits (BphA) from bacteria that incorporated [(13)C]into DNA in 3-day incubations of the soils with [(13)C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl.
- MeSH
- Armoracia microbiology MeSH
- Bacteria classification genetics isolation & purification metabolism MeSH
- Genes, Bacterial MeSH
- RNA, Bacterial genetics MeSH
- Betaproteobacteria classification genetics isolation & purification metabolism MeSH
- Biphenyl Compounds metabolism MeSH
- DNA, Bacterial genetics MeSH
- DNA Primers genetics MeSH
- Phylogeny MeSH
- Carbon Isotopes MeSH
- Soil Pollutants metabolism MeSH
- Molecular Sequence Data MeSH
- Polychlorinated Biphenyls metabolism MeSH
- Soil Microbiology * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Base Sequence MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Bacterial MeSH
- Biphenyl Compounds MeSH
- biphenyl MeSH Browser
- DNA, Bacterial MeSH
- DNA Primers MeSH
- Carbon Isotopes MeSH
- Soil Pollutants MeSH
- Polychlorinated Biphenyls MeSH
- RNA, Ribosomal, 16S MeSH
In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 μM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 μg/mL or 15 μg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular experimental group. The highest rate was detected in roots treated with 100 μM of Pb-EDTA. To determine heavy metal ions many analytical instruments can be used, however, most of them are only able to quantify total content of the metals. This problem can be overcome using laser induced breakdown spectroscopy, because it is able to provide a high spatial-distribution of metal ions in different types of materials, including plant tissues. Data obtained were used to assemble 3D maps of Pb and Mg distribution. Distribution of these elements is concentrated around main vascular bundle of leaf, which means around midrib.