Most cited article - PubMed ID 18456005
Quantitative nitric oxide production by rat, bovine and porcine macrophages
OBJECTIVES: Submental fullness has been associated with being perceived as unattractive. Technology combining radiofrequency and muscle stimulation offers submental contouring through fat reduction, muscle stimulation, and skin tightening. This study aims to demonstrate the effectiveness and safety of fat reduction aspect with a novel submentum applicator delivering HIFES and synchronized radiofrequency+ (RF+) energies. MATERIALS AND METHODS: Six white pigs (sus scrofa domesticus, n = 6, 60-80 kg) were recruited for this study, five in the active group (n = 5) received four treatments on the abdominal area, one sow served as a control (n = 1). Ultrasound, histological, and RT-qPCR methods were used as evaluation methods. RESULTS: Fat thickness decreased at 1 month by -17.35% and at 2 month by 31.40%. Proapoptotic caspase-9 gene expression increased (at 1 h, 6 h, 24 h to +43.45%, +21.22%, -8.36%), as well as caspase-3 (+15.28%, +21.77%, -6.71%), while bcl2l1 activity decreased (-11.46% at 1 h, -17.02% at 6 h, -3.9% at 24 h). While the AI in the control animal had minimal change (at 1 h -0.08%, at 6 h -0.09%, and at 24 h -0.025%), the active group's AI increased from the baseline of 9.14 to 44.85 at 1 h (+391%), peaked at 6 h to 53.50 (+485%), and at 24 h to 38.17 (+318%). CONCLUSION: The study results indicate the efficacy and safety of subcutaneous fat reduction following the novel technology combining HIFES and RF+ energies, designed to target small localized areas.
- Keywords
- apoptosis, caspases, fat reduction, submentum,
- MeSH
- High-Intensity Focused Ultrasound Ablation methods MeSH
- Body Contouring methods MeSH
- Lipectomy methods instrumentation MeSH
- Models, Animal MeSH
- Subcutaneous Fat * MeSH
- Swine MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Wound healing is a process regulated by a complex interaction of multiple growth factors including fibroblast growth factor 2 (FGF2). Although FGF2 appears in several tissue engineered studies, its applications are limited due to its low stability both in vitro and in vivo. Here, this shortcoming is overcome by a unique nine-point mutant of the low molecular weight isoform FGF2 retaining full biological activity even after twenty days at 37 °C. Crosslinked freeze-dried 3D porous collagen/chitosan scaffolds enriched with this hyper stable recombinant human protein named FGF2-STAB® were tested for in vitro biocompatibility and cytotoxicity using murine 3T3-A31 fibroblasts, for angiogenic potential using an ex ovo chick chorioallantoic membrane assay and for wound healing in vivo with 3-month old white New Zealand rabbits. Metabolic activity assays indicated the positive effect of FGF2-STAB® already at very low concentrations (0.01 µg/mL). The angiogenic properties examined ex ovo showed enhanced vascularization of the tested scaffolds. Histological evaluation and gene expression analysis by RT-qPCR proved newly formed granulation tissue at the place of a previous skin defect without significant inflammation infiltration in vivo. This work highlights the safety and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® protein. Moreover, these sponges could be used as scaffolds for growing cells for dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration.
- Keywords
- FGF2, chitosan, collagen, scaffold, skin regeneration, tissue engineering,
- Publication type
- Journal Article MeSH
In Glässer's disease outbreaks, Glaesserella (Haemophilus) parasuis has to overcome the non-specific immune system in the lower respiratory tract, the alveolar macrophages. Here we showed that porcine alveolar macrophages (PAMs) were able to recognize and phagocyte G. parasuis with strain-to-strain variability despite the presence of the capsule in virulent (serovar 1, 5, 12) as well in avirulent strains (serovar 6 and 9). The capsule, outer membrane proteins, virulence-associated autotransporters, cytolethal distending toxins and many other proteins have been identified as virulence factors of this bacterium. Therefore, we immunized pigs with the crude capsular extract (cCE) from the virulent G. parasuis CAPM 6475 strain (serovar 5) and evaluated the role of the anti-cCE/post-vaccinal IgG in the immune response of PAMs to in vitro infection with various G. parasuis strains. We demonstrated the specific binding of the antibodies to the cCE by Western-blotting assay and immunoprecipitation as well as the specific binding to the strain CAPM 6475 in transmission electron microscopy. In the cCE, we identified several virulence-associated proteins that were immunoreactive with IgG isolated from sera of immunized pigs. Opsonization of G. parasuis strains by post-vaccinal IgG led to enhanced phagocytosis of G. parasuis by PAMs at the first two hours of infection. Moreover, opsonization increased the oxidative burst and expression/production of both pro- and anti-inflammatory cytokines. The neutralizing effects of these antibodies on the antioxidant mechanisms of G. parasuis may lead to attenuation of its virulence and pathogenicity in vivo. Together with opsonization of bacteria by these antibodies, the host may eliminate G. parasuis in the infection site more efficiently. Based on these results, the crude capsular extract is a vaccine candidate with immunogenic properties.
- Keywords
- Glaesserela parasuis, Haemophilus parasuis, antibodies, antioxidants, capsule, catalase, porcine alveolar macrophages, reactive oxygen species,
- MeSH
- Macrophages, Alveolar immunology metabolism microbiology MeSH
- Antigens, Bacterial immunology MeSH
- Bacterial Capsules immunology MeSH
- Phagocytosis MeSH
- Haemophilus parasuis immunology pathogenicity MeSH
- Haemophilus Infections immunology metabolism microbiology MeSH
- Kinetics MeSH
- Cells, Cultured MeSH
- Antibodies, Neutralizing immunology metabolism MeSH
- Antibodies, Bacterial immunology metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Serogroup MeSH
- Antibody Specificity MeSH
- Sus scrofa MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Bacterial MeSH
- Antibodies, Neutralizing MeSH
- Antibodies, Bacterial MeSH
- Reactive Oxygen Species MeSH
Deoxynivalenol (DON) is a mycotoxin frequently found in cereals, and pigs are one of the most sensitive farm species to DON. The aim of this study was to determine the effects of DON in very low doses on peripheral blood mononuclear cells (PBMC) and on particular lymphocyte subpopulations. The cells were exposed to 1, 10 and 100 ng/mL of DON and lymphocyte viability, proliferation, and cytokine (Interleukin (IL)-1β, IL-2, IL-8, IL-17, Interferon (IFN) γ and tumor necrosis factor (TNF) α production were studied. Cells exposed to DON for 5 days in concentrations of 1 and 10 ng/mL showed higher viability compared to control cells. After 18 h of DON (100 ng/mL) exposure, a significantly lower proliferation after mitogen stimulation was observed. In contrast, an increase of spontaneous proliferation induced by DON (100 ng/mL) was detected. After DON exposure, the expression of cytokine genes decreased, with the exception of IL-1β and IL-8, which increased after 18 h exposure to 100 ng/mL of DON. Among lymphocyte subpopulations, helper T-cells and γδ T-cells exhibiting lower production of IL-17, IFNγ and TNFα were most affected by DON exposure (10 ng/mL). These findings show that subclinical doses of DON lead to changes in immune response.
- Keywords
- PBMC, animal health, cytokines, deoxynivalenol, immunotoxicity, lymphocytes, pig, subclinical dose,
- MeSH
- Cytokines biosynthesis genetics MeSH
- Gene Expression drug effects MeSH
- Cells, Cultured MeSH
- Leukocytes, Mononuclear drug effects immunology MeSH
- Lymphocyte Subsets drug effects immunology MeSH
- Swine MeSH
- Cell Proliferation drug effects MeSH
- Trichothecenes toxicity MeSH
- Cell Survival drug effects MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytokines MeSH
- deoxynivalenol MeSH Browser
- Trichothecenes MeSH
The effect of venlafaxine, a pharmaceutical commonly found in aquatic environment, was analyzed on non-target organism, Danio rerio (Hamilton, 1822). D. rerio embryos were treated by two different concentrations of venlafaxine: either concentration relevant in aquatic environment (0.3 μg/L) or concentration that was two orders of magnitude higher (30 μg/L) for the evaluation of dose-dependent effect. Time-dependent effect was rated at 24, 96, and 144 h post-fertilization (hpf). For gene expression, genes representing one of the phases of xenobiotic biotransformation (0 to III) were selected. The results of this study showed that the effect of venlafaxine on the zebrafish embryos is the most evident at hatching (96 hpf). At this time, the results showed a downregulation of gene expression in each phase of biotransformation and in both tested concentrations. In contrast, an upregulation of most of the genes was observed 144 hpf for both tested venlafaxine concentrations. The study shows that venlafaxine can affect the gene expression of biotransformation enzymes in D. rerio embryos even in the environmentally relevant concentration and thus disrupt the process of biotransformation. Moreover, the pxr regulation of genes seems to be disrupted after venlafaxine exposure in dose- and time-dependent manner.
- Keywords
- : ABC transporters, Metabolism, Pharmaceutical, Regulation, Xenobiotics, Zebrafish, pxr,
- MeSH
- Antidepressive Agents pharmacology MeSH
- Biotransformation MeSH
- Water Pollutants, Chemical pharmacology MeSH
- Zebrafish * MeSH
- Embryo, Nonmammalian drug effects enzymology MeSH
- Gene Expression Regulation, Enzymologic * MeSH
- Venlafaxine Hydrochloride pharmacology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antidepressive Agents MeSH
- Water Pollutants, Chemical MeSH
- Venlafaxine Hydrochloride MeSH
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant and economically important infectious diseases affecting swine worldwide and can predispose pigs to secondary bacterial infections caused by, e.g. Haemophilus parasuis. The aim of the presented study was to compare susceptibility of two different types of macrophages which could be in contact with both pathogens during infection with PRRS virus (PRRSV) and in co-infection with H. parasuis. Alveolar macrophages (PAMs) as resident cells provide one of the first lines of defence against microbes invading lung tissue. On the other hand, monocyte derived macrophages (MDMs) represent inflammatory cells accumulating at the site of inflammation. While PAMs were relatively resistant to cytopathogenic effect caused by PRRSV, MDMs were much more sensitive to PRRSV infection. MDMs infected with PRRSV increased expression of pro-apoptotic Bad, Bax and p53 mRNA. Increased mortality of MDMs may be also related to a higher intensity of ROS production after infection with PRRSV. In addition, MDMs (but not PAMs) infected with H. parasuis alone formed multinucleated giant cells (MGC); these cells were not observed in MDMs infected with both pathogens. Higher sensitivity of MDMs to PRRSV infection, which is associated with limited MDMs survival and restriction of MGC formation, could contribute to the development of multifactorial respiratory disease of swine.
- MeSH
- Haemophilus parasuis * MeSH
- Haemophilus Infections complications pathology veterinary virology MeSH
- Coinfection metabolism pathology veterinary MeSH
- Macrophages metabolism pathology virology MeSH
- Giant Cells metabolism pathology virology MeSH
- Swine MeSH
- Pyrimidines MeSH
- Reactive Oxygen Species metabolism MeSH
- Porcine Reproductive and Respiratory Syndrome metabolism pathology virology MeSH
- Sulfonamides MeSH
- Porcine respiratory and reproductive syndrome virus * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- oclacitinib MeSH Browser
- Pyrimidines MeSH
- Reactive Oxygen Species MeSH
- Sulfonamides MeSH
BACKGROUND: Lactoferrin (LF) is an 80 kDa glycoprotein which is known for its effects against bacteria, viruses and other pathogens. It also has a high potential in nutrition therapy and welfare of people and a variety of animals, including piglets. The ability to bind lipopolysaccharide (LPS) is one of the described anti-inflammatory mechanisms of LF. Previous studies suggested that cells can be stimulated even by LPS-free LF. Therefore, the aim of our study was to bring additional information about this possibility. Porcine monocyte derived macrophages (MDMF) and human embryonic kidney (HEK) cells were stimulated with unpurified LF in complex with LPS and with purified LF without bound LPS. RESULTS: Both cell types were stimulated with unpurified as well as purified LF. On the other hand, neither HEK0 cells not expressing any TLR nor HEK4a cells transfected with TLR4 produced any pro-inflammatory cytokine transcripts after stimulation with purified LF. This suggests that purified LF without LPS stimulates cells via another receptor than TLR4. An alternative, TLR4-independent, pathway was further confirmed by analyses of the NF-kappa-B-inducing kinase (NIK) activation. Western blot analyses showed NIK which activates different NFκB subunits compared to LF-LPS signaling via TLR4. Though, this confirmed an alternative pathway which is used by the purified LF free of LPS. This stimulation of MDMF led to low, but significant amounts of pro-inflammatory cytokines, which can be considered as a positive stimulation of the immune system. CONCLUSION: Our results suggest that LF's ability is not only to bind LPS, but LF itself may be a stimulant of pro-inflammatory pathways.
- Keywords
- Inflammatory cytokines, LPS, NFκB, NIK, TLR4,
- MeSH
- Cytokines genetics metabolism MeSH
- HEK293 Cells MeSH
- Intracellular Signaling Peptides and Proteins metabolism MeSH
- Lactoferrin isolation & purification pharmacology MeSH
- Humans MeSH
- Lipopolysaccharides pharmacology MeSH
- Macrophages drug effects MeSH
- Swine MeSH
- Protein Serine-Threonine Kinases metabolism MeSH
- Gene Expression Regulation drug effects MeSH
- Signal Transduction drug effects MeSH
- Toll-Like Receptor 4 genetics metabolism MeSH
- Protein Binding MeSH
- Inflammation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytokines MeSH
- Intracellular Signaling Peptides and Proteins MeSH
- Lactoferrin MeSH
- Lipopolysaccharides MeSH
- Nik related kinase MeSH Browser
- Protein Serine-Threonine Kinases MeSH
- Toll-Like Receptor 4 MeSH
BACKGROUND: This study aims to investigate the anti-inflammatory effect of biologically active phospholipids (BAP) used in preparations for clinical practice in humans. Until date, except anti-neoplastic ability, little is known about anti-inflammatory property of the phospholipids. METHODS: While the course of bacterially induced acute pneumonia and markers of inflammation were studied in in vivo system in pigs orally supplemented with BAP, the pro- and anti-inflammatory response of lipopolysaccharide-stimulated porcine monocyte-derived macrophages to 24 h- and 48 h-treatment by BAP was investigated in in vitro system. In vivo, the animal health status was monitored and pro-inflammatory IL-1β and IL-8 in sera were detected by ELISA during the experiment, while bronchoalveolar lavage fluids (BALF) and the lungs were examined post-mortem. Total and differential counts of white blood cell (WBC) were determined in blood and BALF. In vitro, mRNA expression of pro-inflammatory (TNF-α, IL-1β, CXCL10) and anti-inflammatory (IL-10 and Arg1) cytokines, and level of activated caspase 1 and phosphorylated protein kinase C epsilon (pPKCϵ), were studied using qRT-PCR and Western blot, respectively. For the purposes of both systems, 6 animals were used in each of the BAP-supplemented and the control groups. RESULTS: In vivo, BAP had a positive influence on the course of the disease. The immunomodulatory effects of BAP were confirmed by lower levels of IL-1β, IL-8, and a lower WBC count in the supplemented group in comparison with the control group. A lower percentage of lung parenchyma was affected in the supplemented group comparing to the control group (on average, 4% and 34% of tissue, respectively). In vitro, BAP suppressed mRNA expression of mRNA for IL-10 and all pro-inflammatory cytokines tested. This down-regulation was dose- and time-dependent. Arg1 mRNA expression remained unaffected. Further dose- and time-dependent suppression of the activated caspase 1 and pPKCϵ was detected in macrophages when treated with BAP. CONCLUSIONS: Our results demonstrate that BAP has anti-inflammatory and immunomodulatory properties, thus emphasizing the potential of this compound as a natural healing agent.
- MeSH
- Anti-Inflammatory Agents pharmacology MeSH
- Pneumonia, Bacterial metabolism pathology MeSH
- Bronchoalveolar Lavage Fluid cytology MeSH
- Cytokines blood MeSH
- Phospholipid Ethers pharmacology MeSH
- Cells, Cultured MeSH
- Leukocytes MeSH
- Lipopolysaccharides MeSH
- Macrophages drug effects MeSH
- Lung drug effects pathology MeSH
- Swine MeSH
- Inflammation drug therapy metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Inflammatory Agents MeSH
- Cytokines MeSH
- Phospholipid Ethers MeSH
- Lipopolysaccharides MeSH
DEET (N,N-diethyl-m-toluamide) is the most common active ingredient in the insect repellents commonly detected in European groundwater. The aim of this study was to investigate the effect of subchronic DEET exposure on biochemical and haematological parameters, antioxidant enzymes, including catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, and the amount of thiobarbituric acid reactive substances (TBARS) in common carp (Cyprinus carpio L.). Two specific proinflammatory and anti-inflammatory cytokine genes were selected to assess an immunological status of the fish. Fish were exposed for 28 days to three concentrations of DEET (1.0 µg/L, 0.1 mg/L, and 1.0 mg/L) where 1 µg/L is corresponding to the concentration found in the environment. DEET had a significant (P < 0.05) effect on increased RBC, decreased mean corpuscular volume (MCV), and mean corpuscular haemoglobin value (MCH) compared to control groups in the concentration of 1 mg/L. A significant decline (P < 0.05) in triacylglycerols (TAG) in plasma was found in the concentration of 1 mg/L compared to the control groups. The parameters of oxidative stress in tissues of common carp were weekly affected and immunological parameters were not affected.
- MeSH
- Antioxidants analysis MeSH
- Biomarkers blood MeSH
- Cytokines blood MeSH
- DEET administration & dosage toxicity MeSH
- Carps metabolism MeSH
- Organ Specificity MeSH
- Oxidative Stress drug effects MeSH
- Oxidoreductases blood MeSH
- Toxicity Tests, Subchronic MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antioxidants MeSH
- Biomarkers MeSH
- Cytokines MeSH
- DEET MeSH
- Oxidoreductases MeSH
Genes localized at Salmonella pathogenicity island-1 (SPI-1) are involved in Salmonella enterica invasion of host non-professional phagocytes. Interestingly, in macrophages, SPI-1-encoded proteins, in addition to invasion, induce cell death via activation of caspase-1 which also cleaves proIL-1β and proIL-18, precursors of 2 proinflammatory cytokines. In this study we were therefore interested in whether SPI-1-encoded type III secretion system (T3SS) may influence proinflammatory response of macrophages. To test this hypothesis, we infected primary porcine alveolar macrophages with wild-type S. Typhimurium and S. Enteritidis and their isogenic SPI-1 deletion mutants. ΔSPI1 mutants of both serovars invaded approx. 5 times less efficiently than the wild-type strains and despite this, macrophages responded to the infection with ΔSPI1 mutants by increased expression of proinflammatory cytokines IL-1β, IL-8, TNFα, IL-23α and GM-CSF. Identical macrophage responses to that induced by the ΔSPI1 mutants were also observed to the infection with sipB but not the sipA mutant. The hilA mutant exhibited an intermediate phenotype between the ΔSPI1 mutant and the wild-type S. Enteritidis. Our results showed that the SPI-1-encoded T3SS is required not only for cell invasion but in macrophages also for the suppression of early proinflammatory cytokine expression.
- MeSH
- Macrophages, Alveolar immunology metabolism MeSH
- Cytokines genetics metabolism MeSH
- Genomic Islands * MeSH
- Swine Diseases immunology microbiology MeSH
- Swine MeSH
- Salmonella enteritidis genetics MeSH
- Salmonella typhimurium genetics metabolism MeSH
- Salmonella Infections, Animal immunology microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytokines MeSH