Most cited article - PubMed ID 18803819
A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R
Rye (Secale cereale) is a climate-resilient cereal grown extensively as grain or forage crop in Northern and Eastern Europe. In addition to being an important crop, it has been used to improve wheat through introgression of genomic regions for improved yield and disease resistance. Understanding the genomic diversity of rye will assist both the improvement of this crop and facilitate the introgression of more valuable traits into wheat. Here, we isolated and sequenced the short arm of rye chromosome 7 (7RS) from Triticale 380SD using flow cytometry and compared it to the public Lo7 rye whole genome reference assembly. We identify 2747 Lo7 genes present on the isolated chromosome arm and two clusters containing seven and sixty-five genes that are present on Triticale 380SD 7RS, but absent from Lo7 7RS. We identified 29 genes that are not assigned to chromosomal locations in the Lo7 assembly but are present on Triticale 380SD 7RS, suggesting a chromosome arm location for these genes. Our study supports the Lo7 reference assembly and provides a repertoire of genes on Triticale 7RS.
Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.
- Keywords
- Agropyron cristatum, Illumina sequencing, SSR-marker development, annotation, chromosome sorting, chromosome-specific sequences,
- MeSH
- Agropyron * genetics MeSH
- Chromosomes, Plant genetics MeSH
- Disease Resistance genetics MeSH
- Triticum genetics MeSH
- Plant Breeding MeSH
- Publication type
- Journal Article MeSH
Rye is a valuable food and forage crop, an important genetic resource for wheat and triticale improvement and an indispensable material for efficient comparative genomic studies in grasses. Here, we sequenced the genome of Weining rye, an elite Chinese rye variety. The assembled contigs (7.74 Gb) accounted for 98.47% of the estimated genome size (7.86 Gb), with 93.67% of the contigs (7.25 Gb) assigned to seven chromosomes. Repetitive elements constituted 90.31% of the assembled genome. Compared to previously sequenced Triticeae genomes, Daniela, Sumaya and Sumana retrotransposons showed strong expansion in rye. Further analyses of the Weining assembly shed new light on genome-wide gene duplications and their impact on starch biosynthesis genes, physical organization of complex prolamin loci, gene expression features underlying early heading trait and putative domestication-associated chromosomal regions and loci in rye. This genome sequence promises to accelerate genomic and breeding studies in rye and related cereal crops.
- MeSH
- Genome Size MeSH
- Gene Duplication MeSH
- Genetic Loci MeSH
- Genome, Plant * MeSH
- Contig Mapping methods MeSH
- Quantitative Trait, Heritable * MeSH
- Triticum genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Retroelements MeSH
- Plant Proteins genetics metabolism MeSH
- Starch biosynthesis MeSH
- Plant Breeding MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Crops, Agricultural genetics MeSH
- Secale genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Retroelements MeSH
- Plant Proteins MeSH
- Starch MeSH
More than a century has passed since the B chromosomes were first discovered. Today we know much of their variability, morphology, and transmission to plant progeny. With the advent of modern technologies, B chromosome research has accelerated, and some of their persistent mysteries have since been uncovered. Building on this momentum, here we extend current knowledge of B chromosomes in Sorghum purpureosericeum to the sequence level. To do this, we estimated the B chromosome size at 421 Mb, sequenced DNA from flow-sorted haploid pollen nuclei of both B-positive (B+) and B-negative (B0) plants, and performed a repeat analysis on the Illumina raw sequence data. This analysis revealed nine putative B-specific clusters, which were then used to develop B chromosome-specific markers. Additionally, cluster SpuCL4 was identified and verified to be a centromeric repeat. We also uncovered two repetitive clusters (SpuCL168 and SpuCL115), which hybridized exclusively on the B chromosome under fluorescence in situ hybridization and can be considered as robust cytogenetic markers. Given that B chromosomes in Sorghum are rather unstable across all tissues, our findings could facilitate expedient identification of B+ plants and enable a wide range of studies to track this chromosome type in situ.
- Keywords
- Sorghum purpureosericeum, B chromosomes, cytogenetics, flow cytometry, pollen nuclei, repeat analysis,
- MeSH
- Chromosomes, Plant genetics MeSH
- Genetic Markers MeSH
- In Situ Hybridization, Fluorescence MeSH
- Chromosome Mapping MeSH
- Sorghum * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Genetic Markers MeSH
BACKGROUND: A prominent and distinctive feature of the rye (Secale cereale) chromosomes is the presence of massive blocks of subtelomeric heterochromatin, the size of which is correlated with the copy number of tandem arrays. The rapidity with which these regions have formed over the period of speciation remains unexplained. RESULTS: Using a BAC library created from the short arm telosome of rye chromosome 1R we uncovered numerous arrays of the pSc200 and pSc250 tandem repeat families which are concentrated in subtelomeric heterochromatin and identified the adjacent DNA sequences. The arrays show significant heterogeneity in monomer organization. 454 reads were used to gain a representation of the expansion of these tandem repeats across the whole rye genome. The presence of multiple, relatively short monomer arrays, coupled with the mainly star-like topology of the monomer phylogenetic trees, was taken as indicative of a rapid expansion of the pSc200 and pSc250 arrays. The evolution of subtelomeric heterochromatin appears to have included a significant contribution of illegitimate recombination. The composition of transposable elements (TEs) within the regions flanking the pSc200 and pSc250 arrays differed markedly from that in the genome a whole. Solo-LTRs were strongly enriched, suggestive of a history of active ectopic exchange. Several DNA motifs were over-represented within the LTR sequences. CONCLUSION: The large blocks of subtelomeric heterochromatin have arisen from the combined activity of TEs and the expansion of the tandem repeats. The expansion was likely based on a highly complex network of recombination mechanisms.
- Keywords
- 1RS BAC library, 454 sequences, DNA motifs, Rye, Secale cereale, Subtelomeric heterochromatin, TE–tandem junctions, Tandem repeats, Transposable elements,
- MeSH
- Gene Amplification * MeSH
- Chromosomes, Plant genetics MeSH
- Phylogeny MeSH
- Gene Library MeSH
- Heterochromatin genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Genome Components MeSH
- Sequence Analysis, DNA MeSH
- Oligonucleotide Array Sequence Analysis MeSH
- Tandem Repeat Sequences * MeSH
- DNA Transposable Elements * MeSH
- Chromosomes, Artificial, Bacterial MeSH
- Secale genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Heterochromatin MeSH
- DNA Transposable Elements * MeSH
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.
- Keywords
- Aegilops tauschii, BAC sequencing, Barley, HarvEST:Barley, Hordeum vulgare L., centromere BACs, gene distribution, recombination frequency, synteny,
- MeSH
- Genome, Plant genetics MeSH
- Hordeum genetics MeSH
- Molecular Sequence Data MeSH
- Chromosomes, Artificial, Bacterial genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.
- MeSH
- Chromosomes chemistry genetics MeSH
- Physical Chromosome Mapping methods MeSH
- Genome, Human MeSH
- Genomics methods MeSH
- Gene Library MeSH
- Karyotype MeSH
- Humans MeSH
- Chromosome Painting methods MeSH
- Mitosis MeSH
- Flow Cytometry methods MeSH
- Plants chemistry genetics MeSH
- Oligonucleotide Array Sequence Analysis methods MeSH
- Chromosome Structures chemistry genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
BACKGROUND: Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. RESULTS: In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. CONCLUSION: A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic diversity studies and in marker-assisted selection.
- MeSH
- Musa genetics MeSH
- DNA, Plant genetics MeSH
- Genome, Plant * MeSH
- Microsatellite Repeats * MeSH
- Retroelements * MeSH
- Sequence Analysis, DNA MeSH
- DNA Transposable Elements * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- Retroelements * MeSH
- DNA Transposable Elements * MeSH