BAC sequencing Dotaz Zobrazit nápovědu
BACKGROUND: Physical maps created from large insert DNA libraries, typically cloned in BAC vector, are valuable resources for map-based cloning and de novo genome sequencing. The maps are most useful if contigs of overlapping DNA clones are anchored to chromosome(s), and ordered along them using molecular markers. Here we present a novel approach for anchoring physical maps, based on sequencing three-dimensional pools of BAC clones from minimum tilling path. RESULTS: We used physical map of wheat chromosome arm 3DS to validate the method with two different DNA sequence datasets. The first comprised 567 genes ordered along the chromosome arm based on syntenic relationship of wheat with the sequenced genomes of Brachypodium, rice and sorghum. The second dataset consisted of 7,136 SNP-containing sequences, which were mapped genetically in Aegilops tauschii, the donor of the wheat D genome. Mapping of sequence reads from individual BAC pools to the first and the second datasets enabled unambiguous anchoring 447 and 311 3DS-specific sequences, respectively, or 758 in total. CONCLUSIONS: We demonstrate the utility of the novel approach for BAC contig anchoring based on mass parallel sequencing of three-dimensional pools prepared from minimum tilling path of physical map. The existing genetic markers as well as any other DNA sequence could be mapped to BAC clones in a single in silico experiment. The approach reduces significantly the cost and time needed for anchoring and is applicable to any genomic project involving the construction of anchored physical map.
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.
- Klíčová slova
- Aegilops tauschii, BAC sequencing, Barley, HarvEST:Barley, Hordeum vulgare L., centromere BACs, gene distribution, recombination frequency, synteny,
- MeSH
- genom rostlinný genetika MeSH
- ječmen (rod) genetika MeSH
- molekulární sekvence - údaje MeSH
- umělé bakteriální chromozomy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Large insert genomic DNA libraries are useful resources for genomic studies. Although the genome of Xenopus tropicalis stands as the amphibian reference genome because it benefitted from large-scale sequencing studies, physical mapping resources such as BAC libraries are lagging behind. Here we present the construction and characterization of a BAC library that covers the whole X. tropicalis genome. We prepared this BAC library from the genomic DNA of X. tropicalis females of the Adiopodoume strain. We characterized BAC clones by screening for specific loci, by chromosomal localization using FISH and by systematic BAC end sequencing. The median insert size is about 110kbp and the library coverage is around six genome equivalents. We obtained a total of 163,787 BAC end sequences with mate pairs for 77,711 BAC clones. We mapped all BAC end sequences to the reference X. tropicalis genome assembly to enable the identification of BAC clones covering specific loci. Overall, this BAC library resource complements the knowledge of the X. tropicalis genome and should further promote its use as a reference genome for developmental biology studies and amphibian comparative genomics.
- Klíčová slova
- Amphibian, BAC library, Genomics, Xenopus tropicalis,
- MeSH
- genomika metody MeSH
- genová knihovna * MeSH
- hybridizace in situ fluorescenční MeSH
- játra chemie MeSH
- mapování chromozomů MeSH
- proteiny Xenopus genetika MeSH
- sekvenční analýza DNA MeSH
- umělé bakteriální chromozomy genetika MeSH
- Xenopus genetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny Xenopus MeSH
BACKGROUND: Rye (Secale cereale L.) belongs to tribe Triticeae and is an important temperate cereal. It is one of the parents of man-made species Triticale and has been used as a source of agronomically important genes for wheat improvement. The short arm of rye chromosome 1 (1RS), in particular is rich in useful genes, and as it may increase yield, protein content and resistance to biotic and abiotic stress, it has been introgressed into wheat as the 1BL.1RS translocation. A better knowledge of the rye genome could facilitate rye improvement and increase the efficiency of utilizing rye genes in wheat breeding. RESULTS: Here, we report on BAC end sequencing of 1,536 clones from two 1RS-specific BAC libraries. We obtained 2,778 (90.4%) useful sequences with a cumulative length of 2,032,538 bp and an average read length of 732 bp. These sequences represent 0.5% of 1RS arm. The GC content of the sequenced fraction of 1RS is 45.9%, and at least 84% of the 1RS arm consists of repetitive DNA. We identified transposable element junctions in BESs and developed insertion site based polymorphism markers (ISBP). Out of the 64 primer pairs tested, 17 (26.6%) were specific for 1RS. We also identified BESs carrying microsatellites suitable for development of 1RS-specific SSR markers. CONCLUSION: This work demonstrates the utility of chromosome arm-specific BAC libraries for targeted analysis of large Triticeae genomes and provides new sequence data from the rye genome and molecular markers for the short arm of rye chromosome 1.
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- fyzikální mapování chromozomů MeSH
- genetické markery MeSH
- genom rostlinný * MeSH
- genová knihovna MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární sekvence - údaje MeSH
- repetitivní sekvence nukleových kyselin MeSH
- rostlinné geny MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- umělé bakteriální chromozomy MeSH
- výpočetní biologie MeSH
- žito genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- genetické markery MeSH
BACKGROUND: Silene latifolia represents one of the best-studied plant sex chromosome systems. A new approach using RNA-seq data has recently identified hundreds of new sex-linked genes in this species. However, this approach is expected to miss genes that are either not expressed or are expressed at low levels in the tissue(s) used for RNA-seq. Therefore other independent approaches are needed to discover such sex-linked genes. RESULTS: Here we used 10 well-characterized S. latifolia sex-linked genes and their homologs in Silene vulgaris, a species without sex chromosomes, to screen BAC libraries of both species. We isolated and sequenced 4 Mb of BAC clones of S. latifolia X and Y and S. vulgaris genomic regions, which yielded 59 new sex-linked genes (with S. vulgaris homologs for some of them). We assembled sequences that we believe represent the tip of the Xq arm. These sequences are clearly not pseudoautosomal, so we infer that the S. latifolia X has a single pseudoautosomal region (PAR) on the Xp arm. The estimated mean gene density in X BACs is 2.2 times lower than that in S. vulgaris BACs, agreeing with the genome size difference between these species. Gene density was estimated to be extremely low in the Y BAC clones. We compared our BAC-located genes with the sex-linked genes identified in previous RNA-seq studies, and found that about half of them (those with low expression in flower buds) were not identified as sex-linked in previous RNA-seq studies. We compiled a set of ~70 validated X/Y genes and X-hemizygous genes (without Y copies) from the literature, and used these genes to show that X-hemizygous genes have a higher probability of being undetected by the RNA-seq approach, compared with X/Y genes; we used this to estimate that about 30% of our BAC-located genes must be X-hemizygous. The estimate is similar when we use BAC-located genes that have S. vulgaris homologs, which excludes genes that were gained by the X chromosome. CONCLUSIONS: Our BAC sequencing identified 59 new sex-linked genes, and our analysis of these BAC-located genes, in combination with RNA-seq data suggests that gene losses from the S. latifolia Y chromosome could be as high as 30 %, higher than previous estimates of 10-20%.
- MeSH
- chromozomy rostlin genetika MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví * MeSH
- regulace genové exprese u rostlin MeSH
- sekvence nukleotidů MeSH
- Silene genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cloned DNA libraries in bacterial artificial chromosome (BAC) are the most widely used form of large-insert DNA libraries. BAC libraries are typically represented by ordered clones derived from genomic DNA of a particular organism. In the case of large eukaryotic genomes, whole-genome libraries consist of a hundred thousand to a million clones, which make their handling and screening a daunting task. The labor and cost of working with whole-genome libraries can be greatly reduced by constructing a library derived from a smaller part of the genome. Here we describe construction of BAC libraries from mitotic chromosomes purified by flow cytometric sorting. Chromosome-specific BAC libraries facilitate positional gene cloning, physical mapping, and sequencing in complex plant genomes.
- Klíčová slova
- BAC library, BAC vector, Chromosomes, Clone, DNA cloning, High molecular weight (HMW) DNA, Pulse-field gel electrophoresis (PFGE),
- MeSH
- chromozomy rostlin * MeSH
- genom rostlinný MeSH
- genomová knihovna * MeSH
- průtoková cytometrie metody MeSH
- rostliny genetika MeSH
- umělé bakteriální chromozomy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate 'gold' reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. RESULTS: We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. CONCLUSIONS: We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes.
- Klíčová slova
- 7DS, Assembly, BAC, Next-generation sequencing, SASSY, Saccharum spp, Triticum aestivum,
- Publikační typ
- časopisecké články MeSH
Chromosome painting (CP) refers to visualization of large chromosome regions, chromosome arms or entire chromosomes via fluorescence in situ hybridization (FISH) of chromosome-specific DNA sequences. For CP in crucifers (Brassicaceae), typically contigs of chromosome-specific bacterial artificial chromosomes (BAC) from Arabidopsis thaliana are applied as painting probes on chromosomes of A. thaliana or other species (comparative chromosome painting, CCP). CP/CCP enables to identify and trace particular chromosome regions and/or chromosomes throughout all mitotic and meiotic stages as well as corresponding interphase chromosome territories. However, extended pachytene chromosomes provide the highest resolution of CP/CCP. Fine-scale chromosome structure, structural chromosome rearrangements (such as inversions, translocations, centromere repositioning), and chromosome breakpoints can be investigated by CP/CCP. BAC DNA probes can be accompanied by other types of DNA probes, such as repetitive DNA, genomic DNA, or synthetic oligonucleotide probes. Here, we describe a robust step-by-step protocol of CP and CCP which proved to be efficient across the family Brassicaceae, but which is also applicable to other angiosperm families.
- Klíčová slova
- Arabidopsis thaliana, BAC FISH, Brassicaceae, Chromosome painting, Fluorescence in situ hybridization (FISH), Nick translation,
- MeSH
- Arabidopsis * genetika MeSH
- Brassicaceae * genetika MeSH
- buněčné klony MeSH
- chromozomy MeSH
- DNA sondy MeSH
- DNA MeSH
- hybridizace in situ fluorescenční metody MeSH
- malování chromozomů metody MeSH
- umělé bakteriální chromozomy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA sondy MeSH
- DNA MeSH
Common wheat (Triticum aestivum L., 2n = 6x = 42) is a polyploid species possessing one of the largest genomes among the cultivated crops (1C is approximately 17 000 Mb). The presence of three homoeologous genomes (A, B and D), and the prevalence of repetitive DNA make sequencing the wheat genome a daunting task. We have developed a novel 'chromosome arm-based' strategy for wheat genome sequencing to simplify this task; this relies on sub-genomic libraries of large DNA inserts. In this paper, we used a di-telosomic line of wheat to isolate six million copies of the short arm of chromosome 1B (1BS) by flow sorting. Chromosomal DNA was partially digested with HindIII and used to construct an arm-specific BAC library. The library consists of 65 280 clones with an average insert size of 82 kb. Almost half of the library (45%) has inserts larger than 100 kb, while 18% of the inserts range in size between 75 and 100 kb, and 37% are shorter than 75 kb. We estimated the chromosome arm coverage to be 14.5-fold, giving a 99.9% probability of identifying a clone corresponding to any sequence on the short arm of 1B. Each chromosome arm in wheat can be flow sorted from an appropriate cytogenetic stock, and we envisage that the availability of chromosome arm-specific BAC resources in wheat will greatly facilitate the development of ready-to-sequence physical maps and map-based gene cloning.
Positional cloning in bread wheat is a tedious task due to its huge genome size and hexaploid character. BAC libraries represent an essential tool for positional cloning. However, wheat BAC libraries comprise more than million clones, which makes their screening very laborious. Here, we present a targeted approach based on chromosome-specific BAC libraries. Such libraries were constructed from flow-sorted arms of wheat chromosome 7D. A library from the short arm (7DS) consisting of 49,152 clones with 113 kb insert size represented 12.1 arm equivalents whereas a library from the long arm (7DL) comprised 50,304 clones of 116 kb providing 14.9x arm coverage. The 7DS library was PCR screened with markers linked to Russian wheat aphid resistance gene DnCI2401, the 7DL library was screened by hybridization with a probe linked to greenbug resistance gene Gb3. The small number of clones combined with high coverage made the screening highly efficient and cost effective.
- MeSH
- chromozomy rostlin genetika MeSH
- fluorescence MeSH
- hybridizace nukleových kyselin genetika MeSH
- karyotypizace MeSH
- klonování DNA metody MeSH
- mikrosatelitní repetice genetika MeSH
- mšice fyziologie MeSH
- nemoci rostlin genetika imunologie parazitologie MeSH
- polymerázová řetězová reakce MeSH
- přirozená imunita genetika MeSH
- pšenice genetika imunologie parazitologie MeSH
- rostlinné geny genetika MeSH
- umělé bakteriální chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH