Most cited article - PubMed ID 19403314
New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains
Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.
- Keywords
- STAT3, TK EGFR, anticancer properties, drug repurposing, mitochondrial uncoupling, niclosamide, salicylanilides,
- MeSH
- Anthelmintics * pharmacology MeSH
- Humans MeSH
- Niclosamide pharmacology MeSH
- Salicylanilides * pharmacology chemistry MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anthelmintics * MeSH
- Niclosamide MeSH
- Salicylanilides * MeSH
A series of 116 small-molecule 1-hydroxynaphthalene-2-carboxanilides was designed based on the fragment-based approach and was synthesized according to the microwave-assisted protocol. The biological activity of all of the compounds was tested on human colon carcinoma cell lines including a deleted TP53 tumor suppressor gene. The mechanism of activity was studied according to the p53 status in the cell. Several compounds revealed a good to excellent activity that was similar to or better than the standard anticancer drugs. Some of these appeared to be more active against the p53 null cells than their wild-type counterparts. Intercalating the properties of these compounds could be responsible for their mechanism of action.
- MeSH
- Apoptosis drug effects MeSH
- DNA metabolism MeSH
- Doxorubicin pharmacology MeSH
- HCT116 Cells MeSH
- Intercalating Agents pharmacology MeSH
- Small Molecule Libraries chemistry pharmacology MeSH
- Humans MeSH
- Models, Molecular MeSH
- Tumor Suppressor Protein p53 metabolism MeSH
- Naphthols chemical synthesis chemistry pharmacology MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology MeSH
- Drug Design * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1-naphthol MeSH Browser
- calf thymus DNA MeSH Browser
- DNA MeSH
- Doxorubicin MeSH
- Intercalating Agents MeSH
- Small Molecule Libraries MeSH
- Tumor Suppressor Protein p53 MeSH
- Naphthols MeSH
- Antineoplastic Agents MeSH
A series of nineteen N-(alkoxyphenyl)-2-hydroxynaphthalene-1-carboxamides and a series of their nineteen positional isomers N-(alkoxyphenyl)-1-hydroxynaphthalene-2-carboxamides were prepared and characterized. Primary in vitro screening of all the synthesized compounds was performed against Mycobacterium tuberculosis H37Ra, M. kansasii and M. smegmatis. Screening of the cytotoxicity of the compounds was performed using human monocytic leukemia THP-1 cells. Some of the tested compounds showed antimycobacterial activity comparable with or higher than that of rifampicin. For example, 2-hydroxy-N-(4-propoxyphenyl)-naphthalene-1-carboxamide showed the highest activity (MIC = 12 µM) against M. tuberculosis with insignificant cytotoxicity. N-[3-(But-2-yloxy)phenyl]- and N-[4-(but-2-yloxy)phenyl]-2-hydroxy-naphthalene-1-carboxamide demonstrated high activity against all tested mycobacterial strains and insignificant cytotoxicity. N-(Alkoxyphenyl)-1-hydroxynaphthalene-2-carboxamides demonstrated rather high effect against M. smegmatis and M. kansasii and strong antiproliferative effect against the human THP-1 cell line. Lipophilicity was found as the main physicochemical parameter influencing the activity. A significant decrease of mycobacterial cell metabolism (viability of M. tuberculosis H37Ra) was observed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay. Structure-activity relationships are discussed.
- Keywords
- MTT assay, hydroxynaphthalenecarboxamides, in vitro antimycobacterial activity, lipophilicity, structure-activity relationships,
- MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Cell Line MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Microbial Viability drug effects MeSH
- Molecular Structure MeSH
- Mycobacterium kansasii drug effects MeSH
- Mycobacterium smegmatis drug effects MeSH
- Mycobacterium tuberculosis drug effects MeSH
- Naphthols chemical synthesis chemistry pharmacology MeSH
- Cell Proliferation drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Naphthols MeSH
A series of fifteen new N-alkoxyphenylanilides of 3-hydroxynaphthalene-2-carboxylic acid was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra and M. avium subsp. paratuberculosis. Some of the tested compounds showed antibacterial and antimycobacterial activity against the tested strains comparable with or higher than that of the standards ampicillin or rifampicin. 3-Hydroxy-N-(2-propoxyphenyl)naphthalene-2-carboxamide and N-[2-(but-2-yloxy)-phenyl]-3-hydroxynaphthalene-2-carboxamide had MIC = 12 µM against all methicillin-resistant S. aureus strains; thus their activity is 4-fold higher than that of ampicillin. The second mentioned compound as well as 3-hydroxy-N-[3-(prop-2-yloxy)phenyl]-naphthalene-2-carboxamide had MICs = 23 µM and 24 µM against M. tuberculosis respectively. N-[2-(But-2-yloxy)phenyl]-3-hydroxynaphthalene-2-carboxamide demonstrated higher activity against M. avium subsp. paratuberculosis than rifampicin. Screening of the cytotoxicity of the most effective antimycobacterial compounds was performed using THP-1 cells, and no significant lethal effect was observed for the most potent compounds. The compounds were additionally tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N-(3-Ethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (IC50 = 4.5 µM) was the most active PET inhibitor. The structure-activity relationships are discussed.
- Keywords
- hydroxynaphthalene-2-carboxanilides, in vitro antibacterial activity, in vitro antimycobacterial activity, in vitro cytotoxicity, photosynthetic electron transport inhibition, structure-activity relationships,
- MeSH
- Ampicillin pharmacology MeSH
- Anilides chemical synthesis pharmacology MeSH
- Anti-Bacterial Agents chemical synthesis pharmacology MeSH
- Cell Line MeSH
- Chloroplasts drug effects physiology MeSH
- Photosynthesis drug effects physiology MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects growth & development MeSH
- Microbial Sensitivity Tests MeSH
- Microbial Viability drug effects MeSH
- Monocytes cytology drug effects MeSH
- Mycobacterium avium subsp. paratuberculosis drug effects growth & development MeSH
- Mycobacterium tuberculosis drug effects growth & development MeSH
- Naphthalenes chemical synthesis pharmacology MeSH
- Rifampin pharmacology MeSH
- Spinacia oleracea drug effects physiology MeSH
- Electron Transport drug effects physiology MeSH
- Cell Survival drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ampicillin MeSH
- Anilides MeSH
- Anti-Bacterial Agents MeSH
- Naphthalenes MeSH
- Rifampin MeSH
In this study, a series of twenty-two ring-substituted naphthalene-1-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized carboxanilides was performed against Mycobacterium avium subsp. paratuberculosis. N-(2-Methoxyphenyl)naphthalene-1-carboxamide, N-(3-methoxy-phenyl)naphthalene-1-carboxamide, N-(3-methylphenyl)naphthalene-1-carboxamide, N-(4-methylphenyl)naphthalene-1-carboxamide and N-(3-fluorophenyl)naphthalene-1-carboxamide showed against M. avium subsp. paratuberculosis two-fold higher activity than rifampicin and three-fold higher activity than ciprofloxacin. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The testing of biological activity of the compounds was completed with the study of photosynthetic electron transport (PET) inhibition in isolated spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity expressed by IC50 value of the most active compound N-[4-(trifluoromethyl)phenyl]naphthalene-1-carboxamide was 59 μmol/L. The structure-activity relationships are discussed.
- MeSH
- Anilides chemical synthesis chemistry pharmacology MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Chloroplasts drug effects metabolism MeSH
- Photosynthesis drug effects MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium avium drug effects MeSH
- Naphthalenes chemistry MeSH
- Spinacia oleracea drug effects metabolism MeSH
- Electron Transport drug effects MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anilides MeSH
- Anti-Bacterial Agents MeSH
- Naphthalenes MeSH
A series of twenty substituted 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates were prepared and characterized. As similar compounds have been described as potential antimycobacterials, primary in vitro screening of the synthesized carbamates was also performed against two mycobacterial species. 2-Hydroxy-3-[2-(2,6-dimethoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride, 2-hydroxy-3-[2-(4-methoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride, and 2-hydroxy-3-[2-(2-methoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride showed higher activity against M. avium subsp. paratuberculosis and M. intracellulare than the standards ciprofloxacin, isoniazid, or pyrazinamide. Cytotoxicity assay of effective compounds was performed using the human monocytic leukaemia THP-1 cell line. Compounds with predicted amphiphilic properties were also tested for their effects on the rate of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. All butyl derivatives significantly stimulated the rate of PET, indicating that the compounds can induce conformational changes in thylakoid membranes resulting in an increase of their permeability and so causing uncoupling of phosphorylation from electron transport.
- MeSH
- Anti-Bacterial Agents chemical synthesis pharmacology MeSH
- Benzoates chemical synthesis pharmacology MeSH
- Carbamates chemical synthesis pharmacology MeSH
- Mycobacterium avium subsp. paratuberculosis drug effects MeSH
- Uncoupling Agents chemical synthesis pharmacology MeSH
- Spinacia oleracea drug effects MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Benzoates MeSH
- Carbamates MeSH
- Uncoupling Agents MeSH
In this study, a series of twenty-two ring-substituted 2-hydroxynaphthalene-1‑carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium marinum, M. kasasii, M. smegmatis. and M. avium paratuberculosis. The compounds were also tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. 2-Hydroxy-N-phenylnaphthalene-1-carboxanilide and 2-hydroxy-N-(3-trifluoromethylphenyl)naphthalene-1-carboxamide (IC₅₀ = 29 µmol/L) were the most active PET inhibitors. Some of tested compounds showed the antibacterial and antimycobacterial activity against the tested strains comparable or higher than the standards ampicillin or isoniazid. Thus, for example, 2-hydroxy-N-(3-nitrophenyl)naphthalene-1-carboxamide showed MIC = 26.0 µmol/L against methicillin-resistant S. aureus and MIC = 51.9 µmol/L against M. marinum, or 2-hydroxy-N-phenylnaphthalene-1-carboxamide demonstrated MIC = 15.2 µmol/L against M. kansasii. The structure-activity relationships for all compounds are discussed.
- MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Chloroplasts drug effects metabolism MeSH
- Photosynthesis drug effects MeSH
- Herbicides chemistry pharmacology MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium drug effects MeSH
- Naphthols chemistry pharmacology MeSH
- Spinacia oleracea drug effects metabolism MeSH
- Electron Transport MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 2-naphthol MeSH Browser
- Anti-Bacterial Agents MeSH
- Herbicides MeSH
- Naphthols MeSH
In this study, a series of twenty-two ring-substituted 3-hydroxy-N-phenylnaphthalene-2-carboxanilides were prepared and characterized. The compounds were tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four Staphylococcus strains and against two mycobacterial species. 3-Hydroxy-N-(2-methoxyphenyl)naphthalene-2-carboxamide showed high biological activity (MIC = 55.0 µmol/L) against S. aureus as well as methicillin-resistant strains. N-(2-Fluorophenyl)-3-hydroxynaphthalene-2-carboxamide showed higher activity (MIC = 28.4 µmol/L) against M. marinum than the standard isoniazid and 3-hydroxy-N-(4-nitrophenyl)naphthalene-2-carboxamide expressed higher activity (MIC = 13.0 µmol/L) against M. kansasii than the standard isoniazid. Cytotoxicity assay of effective antimicrobial compounds was performed using the human monocytic leukemia THP-1 cell line. The PET-inhibiting activity expressed by IC50 value of the most active compound 3-hydroxy-N-(3-nitrophenyl)naphthalene-2-carboxamide was 16.9 μmol/L. The structure-activity relationships of all compounds are discussed.
- MeSH
- Anti-Bacterial Agents chemical synthesis pharmacology MeSH
- Chloroplasts drug effects MeSH
- Photosynthesis drug effects MeSH
- Herbicides chemical synthesis pharmacology MeSH
- Hydrazines chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Spinacia oleracea drug effects MeSH
- Staphylococcus aureus drug effects MeSH
- Electron Transport drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Herbicides MeSH
- Hydrazines MeSH
The development of novel antimicrobial agents represents a timely research topic. Eighteen salicylanilide 4-(trifluoromethyl)benzoates were evaluated against Mycobacterium tuberculosis, M. avium and M. kansasii, eight bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA) and for the inhibition of mycobacterial isocitrate lyase. Some compounds were further screened against drug-resistant M. tuberculosis and for their cytotoxicity. Minimum inhibitory concentrations (MICs) for all mycobacterial strains were within 0.5-32 μmol/L, with 4-chloro-2-[4-(trifluoromethyl)phenylcarbamoyl]phenyl 4-(trifluoromethyl)benzoate superiority. Gram-positive bacteria including MRSA were inhibited with MICs ³ 0.49 μmol/L, while Gram-negative ones were much less susceptible. Salicylanilide 4-(trifluoromethyl)benzoates showed significant antibacterial properties, for many strains being comparable to standard drugs (isoniazid, benzylpenicillin) with no cross-resistance. All esters showed mild inhibition of mycobacterial isocitrate lyase and four compounds were comparable to 3-nitropropionic acid without a direct correlation between in vitro MICs and enzyme inhibition.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Benzoates pharmacology MeSH
- Nitro Compounds pharmacology MeSH
- Isocitrate Lyase antagonists & inhibitors metabolism MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium avium drug effects MeSH
- Mycobacterium kansasii drug effects MeSH
- Mycobacterium tuberculosis drug effects MeSH
- Propionates pharmacology MeSH
- Salicylanilides pharmacology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 3-nitropropionic acid MeSH Browser
- Anti-Bacterial Agents MeSH
- Benzoates MeSH
- Nitro Compounds MeSH
- Isocitrate Lyase MeSH
- Propionates MeSH
- salicylanilide MeSH Browser
- Salicylanilides MeSH
The increasing emergence especially of drug-resistant tuberculosis has led to a strong demand for new anti-tuberculosis drugs. Eighteen salicylanilide benzoates were evaluated for their inhibition potential against Mycobacterium tuberculosis, Mycobacterium avium and two strains of Mycobacterium kansasii; minimum inhibitory concentration values ranged from 0.5 to 16 μmol/L. The most active esters underwent additional biological assays. Four benzoates inhibited effectively the growth of five multidrug-resistant strains and one extensively drug-resistant strain of M. tuberculosis at low concentrations (0.25–2 μmol/L) regardless of the resistance patterns. The highest rate of multidrug-resistant mycobacteria inhibition expressed 4-chloro-2-[4-(trifluoromethyl)-phenylcarbamoyl]phenyl benzoate (0.25–1 μmol/L). Unfortunately, the most potent esters were still considerably cytotoxic, although mostly less than their parent salicylanilides.
- MeSH
- Antitubercular Agents pharmacology toxicity MeSH
- Benzoates pharmacology toxicity MeSH
- Hep G2 Cells MeSH
- Inhibitory Concentration 50 MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Drug Resistance, Multiple, Bacterial MeSH
- Mycobacterium avium drug effects MeSH
- Mycobacterium kansasii drug effects MeSH
- Mycobacterium tuberculosis drug effects MeSH
- Salicylanilides pharmacology toxicity MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antitubercular Agents MeSH
- Benzoates MeSH
- Salicylanilides MeSH