Nejvíce citovaný článek - PubMed ID 19421778
Low temperatures in the autumn induce enhanced expression/relative accumulation of several cold-inducible transcripts/proteins with protective functions from Late-embryogenesis-abundant (LEA) superfamily including dehydrins. Several studies dealing with plants grown under controlled conditions revealed a correlation (significant quantitative relationship) between dehydrin transcript/protein relative accumulation and plant frost tolerance. However, to apply these results in breeding, field experiments are necessary. The aim of the review is to provide a summary of the studies dealing with the relationships between plant acquired frost tolerance and COR/LEA transcripts/proteins relative accumulation in cereals grown in controlled and field conditions. The impacts of cold acclimation and vernalisation processes on the ability of winter-type Triticeae to accumulate COR/LEA proteins are discussed. The factors determining dehydrin relative accumulation under controlled cold acclimation treatments versus field trials during winter seasons are discussed. In conclusion, it can be stated that dehydrins could be used as suitable indicators of winter survival in field-grown winter cereals but only in plant prior to the fulfilment of vernalisation requirement.
- Klíčová slova
- COR14b, cold acclimation, dehydrins, field trials, frost tolerance, growth chambers, vernalisation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.
- MeSH
- fyziologická adaptace genetika MeSH
- fyziologický stres MeSH
- genom rostlinný * MeSH
- genová introgrese MeSH
- imunita rostlin genetika MeSH
- karyotyp MeSH
- mapování chromozomů metody MeSH
- pšenice genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika metabolismus MeSH
- šlechtění rostlin metody MeSH
- zemědělské plodiny genetika imunologie MeSH
- žito genetika imunologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
The effect of short- and long-term cold treatment on the abscisic acid (ABA) and cytokinin (CK) metabolism, and their main biosynthesis- and signaling-related genes were investigated in freezing-sensitive and freezing-tolerant wheat genotypes. Varieties Cheyenne and Chinese Spring substituted with the 5A Cheyenne chromosome, which represented freezing-tolerant genotypes, were compared with the freezing-sensitive Chinese Spring. Hormone levels and gene expression data indicated that the short- and long-term cold treatments are associated with specific regulation of the accumulation of cold-protective proteins and phytohormone levels, as well as the expression profiles of the hormone-related genes. The significant differences were observed between the genotypes, and between their leaf and crown tissues, too. The level of dehydrins, including WCS120 protein, and expression of WCS120 gene were considerably higher in the freezing-tolerant genotypes after 21 days of cold treatment. Expression of Cor14b and CBF14, cold-responsive regulator genes, was increased by cold treatment in all genotypes, to higher extent in freezing-tolerant genotypes. Cluster analysis revealed that the tolerant genotypes had a similar response to cold treatment, regarding expression of the ABA and CK metabolic genes, as well as hormone levels in leaves. As far as hormone levels in crowns are concerned, however, the strongly freezing-tolerant Cheyenne variety clustered separately from the Chinese Spring and the substitution line, which were more similar to each other after both 1 and 21 days of cold treatment than to Cheyenne. Based on these results we concluded that the 5A chromosome of wheat might have both a direct and an indirect impact on the phytohormone-dependent cold-induced freezing tolerance. Based on the gene expression data, novel genetic markers could be developed, which may be used to determine the freezing tolerance level in a wide range of wheat varieties.
- Klíčová slova
- Triticum aestivum, abscisic acid, cold treatment, cytokinin, freezing tolerance, gene expression, phytohormones,
- Publikační typ
- časopisecké články MeSH
We report a series of microarray-based leaf and crown transcriptome comparisons involving three barley cultivars (cvs. Luxor, Igri and Atlas 68) which express differing degrees of frost tolerance. The transcripts were obtained following the exposure of seedlings to low (above and below zero) temperatures, aiming to identify those genes and signalling/metabolic pathways which are associated with frost tolerance. Both the leaves and the crowns responded to low temperature by the up-regulation of a suite of abscisic acid (ABA)-responsive genes, most of which have already been recognized as components of the plant low temperature response. The inter-cultivar comparison indicated that genes involved in maintaining the leaf's capacity to synthesize protein and to retain chloroplast activity were important for the expression of frost tolerance. In the crown, the repression of genes associated with nucleosome assembly and transposon regulation were the most relevant transcriptional changes associated with frost tolerance, highlighting the role of gene repression in the cold acclimation response.
- MeSH
- down regulace MeSH
- ječmen (rod) genetika metabolismus MeSH
- listy rostlin genetika metabolismus MeSH
- mapování chromozomů MeSH
- nukleozomy genetika metabolismus MeSH
- reakce na chladový šok MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika metabolismus MeSH
- transkripční elongační faktory genetika metabolismus MeSH
- transkriptom MeSH
- upregulace MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nukleozomy MeSH
- rostlinné proteiny MeSH
- transkripční elongační faktory MeSH
We report a series of microarray-based comparisons of gene expression in the leaf and crown of the winter barley cultivar Luxor, following the exposure of young plants to various periods of low (above and below zero) temperatures. A transcriptomic analysis identified genes which were either expressed in both the leaf and crown, or specifically in one or the other. Among the former were genes responsible for calcium and abscisic acid signalling, polyamine synthesis, late embryogenesis abundant proteins and dehydrins. In the crown, the key organ for cereal overwintering, cold treatment induced transient changes in the transcription of nucleosome assembly genes, and especially H2A and HTA11, which have been implicated in cold sensing in Arabidopsis thaliana. In the leaf, various heat-shock proteins were induced. Differences in expression pattern between the crown and leaf were frequent for genes involved in certain pathways responsible for osmolyte production (sucrose and starch, raffinose, γ-aminobutyric acid metabolism), sugar signalling (trehalose metabolism) and secondary metabolism (lignin synthesis). The action of proteins with antifreeze activity, which were markedly induced during hardening, was demonstrated by a depression in the ice nucleation temperature.
- MeSH
- aklimatizace genetika MeSH
- GABA genetika metabolismus MeSH
- genetická transkripce MeSH
- histony genetika MeSH
- ječmen (rod) genetika metabolismus MeSH
- lignin biosyntéza genetika MeSH
- listy rostlin genetika metabolismus MeSH
- metabolismus sacharidů genetika MeSH
- nízká teplota * MeSH
- nukleozomy metabolismus MeSH
- proteiny teplotního šoku genetika MeSH
- regulace genové exprese u rostlin * MeSH
- roční období MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GABA MeSH
- histony MeSH
- lignin MeSH
- nukleozomy MeSH
- proteiny teplotního šoku MeSH