Nejvíce citovaný článek - PubMed ID 19754364
Bilirubin chemistry and metabolism; harmful and protective aspects
Bilirubin (BR) is a water-insoluble product of heme catabolism in mammals. Elevated blood concentrations of BR, especially in the neonatal period, are treated with blue-green light phototherapy. The major mechanism of BR elimination during phototherapy is photoisomerization, while a minor, less studied mechanism of degradation is oxidation. In this work, we studied the oxidation of the bilirubin model tetramethyl-dipyrrinone (Z-13) by singlet oxygen in methanol using UV-vis and ESI-MS spectroscopy, resulting in propentdyopents as the main oxidation products. We also identified two additional intermediates that were formed during the reaction (hydroperoxide 21a and imine 17). The structure of the hydroperoxide was confirmed by helium-tagging IR spectroscopy. Such reaction intermediates formed during the oxidation of BR or bilirubin models have not been described so far. We believe that this work can be used as a first step in studying the complex oxidation mechanism of BR during phototherapy.
- MeSH
- bilirubin chemie MeSH
- fotochemické procesy MeSH
- metamizol chemie MeSH
- molekulární struktura MeSH
- oxidace-redukce * MeSH
- singletový kyslík * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bilirubin MeSH
- metamizol MeSH
- singletový kyslík * MeSH
The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.
- Klíčová slova
- Alzheimer’s disease, MAFLD, NRF2, Parkinson’s disease, bilirubin, cancer, heme-oxygenase, herbal medicine, neurodegeneration, nutraceuticals,
- MeSH
- bilirubin MeSH
- biliverdin MeSH
- dospělí MeSH
- hem MeSH
- hemová oxygenasa (decyklizující) MeSH
- játra MeSH
- lidé MeSH
- nemoci mozku * MeSH
- podpora zdraví * MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bilirubin MeSH
- biliverdin MeSH
- hem MeSH
- hemová oxygenasa (decyklizující) MeSH
Bilirubin has several physiological functions, both beneficial and harmful. In addition to reactive oxygen species-scavenging activities, bilirubin has potent immunosuppressive effects associated with long-term pathophysiological sequelae. It has been recently recognized as a hormone with endocrine actions and interconnected effects on various cellular signaling pathways. Current studies show that bilirubin also decreases adiposity and prevents metabolic and cardiovascular diseases. All in all, the physiological importance of bilirubin is only now coming to light, and strategies for increasing plasma bilirubin levels to combat chronic diseases are starting to be considered. This review discusses the beneficial effects of increasing plasma bilirubin, incorporates emerging areas of bilirubin biology, and provides key concepts to advance the field.
- Klíčová slova
- BVRA, Blvra, HO-1, Hmox1, bilirubin, cardiovascular disease, cell signaling, heme oxygenase, metabolism, nuclear receptors,
- MeSH
- bilirubin * metabolismus farmakologie MeSH
- hemoxygenasa-1 metabolismus MeSH
- kardiovaskulární nemoci * MeSH
- lidé MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- bilirubin * MeSH
- hemoxygenasa-1 MeSH
- reaktivní formy kyslíku MeSH
Oxidative stress and inflammation contribute significantly to atherogenesis. We and others have demonstrated that mildly elevated serum bilirubin levels protect against coronary and peripheral atherosclerosis, most likely due to the antioxidant and anti-inflammatory activities of bilirubin. The aim of the present study was to assess serum bilirubin and the markers of oxidative stress and inflammation in both healthy subjects and patients with various forms of atherosclerosis. The study was performed in patients with premature myocardial infarction (n = 129), chronic ischemic heart disease (n = 43), peripheral artery disease (PAD, n = 69), and healthy subjects (n = 225). In all subjects, standard serum biochemistry, UGT1A1 genotypes, total antioxidant status (TAS), and concentrations of various pro- and anti-inflammatory chemokines were determined. Compared to controls, all atherosclerotic groups had significantly lower serum bilirubin and TAS, while having much higher serum high-sensitivity C-reactive protein (hsCRP) and most of the analyzed proinflammatory cytokines (p < 0.05 for all comparisons). Surprisingly, the highest inflammation, and the lowest antioxidant status, together with the lowest serum bilirubin, was observed in PAD patients, and not in premature atherosclerosis. In conclusion, elevated serum bilirubin is positively correlated with TAS, and negatively related to inflammatory markers. Compared to healthy subjects, patients with atherosclerosis have a much higher degree of oxidative stress and inflammation.
- Klíčová slova
- atherogenesis, atherosclerosis, bilirubin, inflammation, oxidative stress,
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Bilirubin is a potent endogenous antioxidant and immunomodulating substance, which is also implicated in both cell signalling and various metabolic pathways. Mild elevation of systemic bilirubin concentrations provides substantial protection against many diseases of civilization. Rare published reports have suggested that serum bilirubin might also be relevant to sports performance. The purpose of the current study was to evaluate serum bilirubin concentrations and the prevalence of Gilbert syndrome (GS) in elite athletes. METHODS: The study was carried out in 536 consecutive healthy elite athletes and in 2594 individuals of the Czech post-MONICA study representing the general Czech population. Serum bilirubin concentrations, the prevalence of benign hyperbilirubinemia > 17 µmol/L (1 mg/dL, a phenotypic sign of GS), and a variant of the UGT1A1 gene promoter responsible for GS manifestation in Caucasians (rs81753472) were evaluated in study subjects. RESULTS: Compared to the general Czech population, significantly higher serum bilirubin concentrations were found in elite athletes (9.6 vs. 11.6 µmol/L, p < 0.001), both in men (11.3 vs. 12.6 µmol/L, p < 0.001) and women (8.3 vs. 10.5 µmol/L, p < 0.001). Furthermore, the prevalence of GS was also significantly higher in elite athletes (9.6 vs. 22%, p < 0.001) together with the tendency to higher frequencies of the genotypes (TA)7/7 and (TA)6/7 UGT1A1. CONCLUSION: Elite athletes have significantly higher concentrations of serum bilirubin, the most potent endogenous antioxidant substance known. Simultaneously, the prevalence of GS syndrome is also much higher in elite athletes, suggesting that a mild elevation of serum bilirubin might predispose to better sports performance.
- Klíčová slova
- Bilirubin, Elite athletes, Gene predisposition, Gilbert syndrome, Sports performance, UGT1A1 gene promoter,
- Publikační typ
- časopisecké články MeSH
Unconjugated bilirubin (UCB) is the end-product of heme catabolism in the intravascular compartment. Although beneficial for human health when mildly elevated in the body, when present at greater than a critical threshold concentration, UCB exerts toxic effects that are related to its physico-chemical properties, particularly affecting the central nervous system. The aim of the present study was to characterize bilirubin-10-sulfonate (ranarubin), a naturally occurring bile pigment, including determination of its mixed acidity constants (pKa*). Thanks to the presence of the sulfonic acid moiety, this compound is more polar compared to UCB, which might theoretically solve the problem with an accurate determination of the UCB pKa* values of its propionic acid carboxylic groups. Bilirubin-10-sulfonate was synthesized by modification of a previously described procedure; and its properties were studied by mass spectrometry (MS), nuclear magnetic resonance (NMR), infrared (IR), and circular dichroism (CD) spectroscopy. Determination of pKa* values of bilirubin-10-sulfonate and UCB was performed by capillary electrophoresis with low pigment concentrations in polar buffers. The identity of the synthesized bilirubin-10-sulfonate was confirmed by MS, and the pigment was further characterized by NMR, IR, and CD spectroscopy. The pKa values of carboxylic acid moieties of bilirubin-10-sulfonate were determined to be 5.02, whereas those of UCB were determined to be 9.01. The physico-chemical properties of bilirubin-10-sulfonate were partially characterized with low pKa* values compared to those of UCB, indicating that bilirubin-10-sulfonate cannot be used as a surrogate pigment for UCB chemical studies. In addition, using a different methodological approach, the pKa* values of UCB were found to be in a mildly alkaline region, confirming the conclusions of a recent critical re-evaluation of this specific issue.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Background: Circulating bilirubin is associated with reduced adiposity in human and animal studies. A possible explanation is provided by in vitro data that demonstrates that bilirubin inhibits mitochondrial function and decreases efficient energy production. However, it remains unclear whether hyperbilirubinemic animals have similar perturbed mitochondrial function and whether this is important for regulation of energy homeostasis. Aim: To investigate the impact of unconjugated hyperbilirubinemia on body composition, and mitochondrial function in hepatic tissue and skeletal muscle. Materials and Methods: 1) Food intake and bodyweight gain of 14-week old hyperbilirubinemic Gunn (n = 19) and normobilirubinemic littermate (control; n = 19) rats were measured over a 17-day period. 2) Body composition was determined using dual-energy X-ray absorptiometry and by measuring organ and skeletal muscle masses. 3) Mitochondrial function was assessed using high-resolution respirometry of homogenized liver and intact permeabilized extensor digitorum longus and soleus fibers. 4) Liver tissue was flash frozen for later gene (qPCR), protein (Western Blot and citrate synthase activity) and lipid analysis. Results: Female hyperbilirubinemic rats had significantly reduced fat mass (Gunn: 9.94 ± 5.35 vs. Control: 16.6 ± 6.90 g, p < 0.05) and hepatic triglyceride concentration (Gunn: 2.39 ± 0.92 vs. Control: 4.65 ± 1.67 mg g-1, p < 0.01) compared to normobilirubinemic controls. Furthermore, hyperbilirubinemic rats consumed fewer calories daily (p < 0.01) and were less energetically efficient (Gunn: 8.09 ± 5.75 vs. Control: 14.9 ± 5.10 g bodyweight kcal-1, p < 0.05). Hepatic mitochondria of hyperbilirubinemic rats demonstrated increased flux control ratio (FCR) via complex I and II (CI+II) (Gunn: 0.78 ± 0.16 vs. Control: 0.62 ± 0.09, p < 0.05). Similarly, exogenous addition of 31.3 or 62.5 μM unconjugated bilirubin to control liver homogenates significantly increased CI+II FCR (p < 0.05). Hepatic PGC-1α gene expression was significantly increased in hyperbilirubinemic females while FGF21 and ACOX1 was significantly greater in male hyperbilirubinemic rats (p < 0.05). Finally, hepatic mitochondrial complex IV subunit 1 protein expression was significantly increased in female hyperbilirubinemic rats (p < 0.01). Conclusions: This is the first study to comprehensively assess body composition, fat metabolism, and mitochondrial function in hyperbilirubinemic rats. Our findings show that hyperbilirubinemia is associated with reduced fat mass, and increased hepatic mitochondrial biogenesis, specifically in female animals, suggesting a dual role of elevated bilirubin and reduced UGT1A1 function on adiposity and body composition.
- Klíčová slova
- Gunn rat, hyperbilirubinemia, lipids, metabolism, mitochondria, respiration, triglycerides, unconjugated bilirubin (UCB),
- Publikační typ
- časopisecké články MeSH
Bilirubin is a yellow endogenous derivate of the heme catabolism. Since the 1980s, it has been recognized as one of the most potent antioxidants in nature, able to counteract 10,000× higher intracellular concentrations of H2O2. In the recent years, not only bilirubin, but also its precursor biliverdin, and the enzymes involved in their productions (namely heme oxygenase and biliverdin reductase; altogether the "yellow players"-YPs) have been recognized playing a protective role in diseases characterized by a chronic prooxidant status. Based on that, there is an ongoing effort in inducing their activity as a therapeutic option. Nevertheless, the understanding of their specific contributions to pathological conditions of the central nervous system (CNS) and their role in these diseases are limited. In this review, we will focus on the most recent evidence linking the role of the YPs specifically to neurodegenerative and neurological conditions. Both the protective, as well as potentially worsening effects of the YP's activity will be discussed.
- Klíčová slova
- bilirubin, bilirubin oxidation products, biliverdin, biliverdin reductase, central nervous system (CNS), heme, heme oxygenase, neurodegenerative diseases, yellow players,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Heme oxygenase 1 (Hmox1), a ubiquitous enzyme degrading heme to carbon monoxide, iron, and biliverdin, is one of the cytoprotective enzymes induced in response to a variety of stimuli, including cellular oxidative stress. Gangliosides, sialic acid-containing glycosphingolipids expressed in all cells, are involved in cell recognition, signalling, and membrane stabilization. Their expression is often altered under many pathological and physiological conditions including cell death, proliferation, and differentiation. The aim of this study was to assess the possible role of Hmox1 in ganglioside metabolism in relation to oxidative stress. The content of liver and brain gangliosides, their cellular distribution, and mRNA as well as protein expression of key glycosyltransferases were determined in Hmox1 knockout mice as well as their wild-type littermates. To elucidate the possible underlying mechanisms between Hmox1 and ganglioside metabolism, hepatoblastoma HepG2 and neuroblastoma SH-SY5Y cell lines were used for in vitro experiments. Mice lacking Hmox1 exhibited a significant increase in concentrations of liver and brain gangliosides and in mRNA expression of the key enzymes of ganglioside metabolism. A marked shift of GM1 ganglioside from the subsinusoidal part of the intracellular compartment into sinusoidal membranes of hepatocytes was shown in Hmox1 knockout mice. Induction of oxidative stress by chenodeoxycholic acid in vitro resulted in a significant increase in GM3, GM2, and GD1a gangliosides in SH-SY5Y cells and GM3 and GM2 in the HepG2 cell line. These changes were abolished with administration of bilirubin, a potent antioxidant agent. These observations were closely related to oxidative stress-mediated changes in sialyltransferase expression regulated at least partially through the protein kinase C pathway. We conclude that oxidative stress is an important factor modulating synthesis and distribution of gangliosides in vivo and in vitro which might affect ganglioside signalling in higher organisms.
- MeSH
- gangliosidy metabolismus MeSH
- hemoxygenasa-1 metabolismus MeSH
- játra metabolismus MeSH
- lidé MeSH
- mozek metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- oxidační stres fyziologie MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gangliosidy MeSH
- hemoxygenasa-1 MeSH
Nutritional factors which exhibit antioxidant properties, such as those contained in green plants, may be protective against cancer. Chlorophyll and other tetrapyrrolic compounds which are structurally related to heme and bilirubin (a bile pigment with antioxidant activity) are among those molecules which are purportedly responsible for these effects. Therefore, the aim of our study was to assess both the antiproliferative and antioxidative effects of chlorophylls (chlorophyll a/b, chlorophyllin, and pheophytin a) in experimental pancreatic cancer. Chlorophylls have been shown to produce antiproliferative effects in pancreatic cancer cell lines (PaTu-8902, MiaPaCa-2, and BxPC-3) in a dose-dependent manner (10-125 μmol/L). Chlorophylls also have been observed to inhibit heme oxygenase (HMOX) mRNA expression and HMOX enzymatic activity, substantially affecting the redox environment of pancreatic cancer cells, including the production of mitochondrial/whole-cell reactive oxygen species, and alter the ratio of reduced-to-oxidized glutathione. Importantly, chlorophyll-mediated suppression of pancreatic cancer cell viability has been replicated in in vivo experiments, where the administration of chlorophyll a resulted in the significant reduction of pancreatic tumor size in xenotransplanted nude mice. In conclusion, this data suggests that chlorophyll-mediated changes on the redox status of pancreatic cancer cells might be responsible for their antiproliferative and anticancer effects and thus contribute to the decreased incidence of cancer among individuals who consume green vegetables.
- MeSH
- antioxidancia metabolismus MeSH
- antitumorózní látky farmakologie MeSH
- chlorofyl farmakologie MeSH
- extracelulárním signálem regulované MAP kinasy metabolismus MeSH
- feofytiny metabolismus MeSH
- glutathion metabolismus MeSH
- glutathiondisulfid metabolismus MeSH
- hemová oxygenasa (decyklizující) metabolismus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory slinivky břišní metabolismus MeSH
- oxidace-redukce účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- superoxidy metabolismus MeSH
- Synechocystis chemie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- antitumorózní látky MeSH
- chlorofyl MeSH
- extracelulárním signálem regulované MAP kinasy MeSH
- feofytiny MeSH
- glutathion MeSH
- glutathiondisulfid MeSH
- hemová oxygenasa (decyklizující) MeSH
- peroxid vodíku MeSH
- pheophytin a MeSH Prohlížeč
- superoxidy MeSH