Nejvíce citovaný článek - PubMed ID 20617034
BACKGROUND: Exposure to toxic trace elements, which include metals and metalloids, can induce adverse health effects, including life-threatening diseases. Conversely, essential trace elements are vital for bodily functions, yet their excessive (or inadequate) intake may pose health risks. Therefore, identifying levels and determinants of exposure to trace elements is crucial for safeguarding human health. METHODS: The present study analyzed urinary concentrations of 14 trace elements (arsenic, cadmium, cobalt, chromium, copper, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, and zinc) and their exposure determinants in 711 individuals, spanning from children to young adults from a Central European population from the Czech Republic. Multivariate linear regression and non-parametric Kruskal-Wallis ANOVA were used to investigate exposure determinants. Estimates of 95th percentile concentrations and confidence intervals were carried out to establish reference values (RV95). The study also assessed the percentage of population exceeding health-based guidance values (GVs) to gauge health risks. RESULTS: Young adults showed elevated toxic element concentrations, whereas children exhibited higher concentrations of essential elements. Mercury concentrations were associated with both dental amalgam filling count and seafood intake; arsenic concentrations were associated with seafood, rice, and mushroom consumption. Mushroom consumption also influenced lead concentrations. Sex differences were found for cadmium, zinc, nickel, and cobalt. Between 17.9% and 25% of the participants exceeded recommended GV for arsenic, while 2.4% to 2.8% exceeded GV for cadmium. Only one participant exceeded the GV for mercury, and none exceeded GVs for chromium and thallium. Essential trace elements' GVs were surpassed by 38% to 68.5% participants for zinc, 1.3% to 1.8% for molybdenum, and 0.2% to 0.3% for selenium. IMPACT: The present study examines trace element exposure in a Central European population from the Czech Republic, unveiling elevated exposure levels of toxic elements in young adults and essential elements in children. It elucidates key determinants of trace element exposure, including dietary and lifestyle indicators as well as dental amalgam fillings. Additionally, the study establishes novel reference values and a comparison with established health-based human biomonitoring guidance values, which are crucial for public health decision-making. This comprehensive biomonitoring study provides essential data to inform public health policies and interventions.
- Klíčová slova
- Heavy metals, Human biomonitoring, Human exposure, Trace elements, Urine,
- MeSH
- biologický monitoring * MeSH
- dítě MeSH
- kohortové studie MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- polokovy * moč MeSH
- předškolní dítě MeSH
- stopové prvky * moč MeSH
- těžké kovy * moč MeSH
- vystavení vlivu životního prostředí * analýza MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- polokovy * MeSH
- stopové prvky * MeSH
- těžké kovy * MeSH
The aim of this study was to evaluate the mobility of copper (Cu) and zinc (Zn) and their impact on the properties of bentonites and unfrozen water content. Limited research in this area necessitates further analysis to prevent the negative effects of metal interactions on bentonite effectiveness. Tests involved American (SWy-3, Stx-1b) and Slovak (BSvk) bentonite samples with Zn or Cu ion exchange. Sequential extraction was performed using the Community Bureau of Reference (BCR) method. Elemental content was analyzed via inductively coupled plasma optical emission spectrometry (ICP-OES). Unfrozen water content was measured using nuclear magnetic resonance (1H-NMR) and differential scanning calorimetry (DSC). Results showed a significant influence of the main cation (Zn or Cu) on ion mobility, with toxic metal concentrations increasing mobility and decreasing residual fractions. Mobile Zn fractions increased with larger particle diameters, lower clay content, and shorter interplanar spacing, while the opposite was observed for Cu. Zn likely accumulated in larger clay pores, while Cu was immobilized in the bentonite complex. The stability of Zn or Cu ions increased with higher clay content or specific surface area. Residual Zn or Cu fractions were highest in uncontaminated bentonites with higher unfrozen water content, suggesting the potential formation of concentrated solutions in sub-zero temperatures, posing a threat to the clay-water environment, especially in cold regions.
- Klíčová slova
- bentonite, environmental protection, mobility of toxic metals, physicochemical characterization of porous adsorbents, unfrozen water content,
- Publikační typ
- časopisecké články MeSH
The improving performance of the laser-induced breakdown spectroscopy (LIBS) triggered its utilization in the challenging topic of soft tissue analysis. Alterations of elemental content within soft tissues are commonly assessed and provide further insights in biological research. However, the laser ablation of soft tissues is a complex issue and demands a priori optimization, which is not straightforward in respect to a typical LIBS experiment. Here, we focus on implementing an internal standard into the LIBS elemental analysis of soft tissue samples. We achieve this by extending routine methodology for optimization of soft tissues analysis with a standard spiking method. This step enables a robust optimization procedure of LIBS experimental settings. Considering the implementation of LIBS analysis to the histological routine, we avoid further alterations of the tissue structure. Therefore, we propose a unique methodology of sample preparation, analysis, and subsequent data treatment, which enables the comparison of signal response from heterogenous matrix for different LIBS parameters. Additionally, a brief step-by-step process of optimization to achieve the highest signal-to-noise ratio (SNR) is described. The quality of laser-tissue interaction is investigated on the basis of the zinc signal response, while selected experimental parameters (e.g., defocus, gate delay, laser energy, and ambient atmosphere) are systematically modified.
- Klíčová slova
- elemental mapping, laser-induced breakdown spectroscopy, murine kidneys, soft tissue ablation, zinc,
- MeSH
- buňky MeSH
- laserová terapie * MeSH
- lasery * MeSH
- referenční standardy MeSH
- spektrální analýza MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.
- Klíčová slova
- Cancer, Childhood brain tumors, Metallothioneins, Zinc metalloenzymes, Zinc transporters,
- MeSH
- biologické modely MeSH
- cílená molekulární terapie MeSH
- dítě MeSH
- lidé MeSH
- nádorové proteiny metabolismus MeSH
- nádory mozku diagnóza metabolismus MeSH
- zinek metabolismus MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- nádorové proteiny MeSH
- zinek MeSH
BACKGROUND AND OBJECTIVES: Current studies give us inconsistent results regarding the association of neoplasms and zinc(II) serum and tissues concentrations. The results of to-date studies using meta-analysis are summarized in this paper. METHODS: Web of Science (Science citation index expanded), PubMed (Medline), Embase and CENTRAL were searched. Articles were reviewed by two evaluators; quality was assessed by Newcastle-Ottawa scale; meta-analysis was performed including meta-regression and publication bias analysis. RESULTS: Analysis was performed on 114 case control, cohort and cross-sectional studies of 22737 participants. Decreased serum zinc level was found in patients with lung (effect size = -1.04), head and neck (effect size = -1.43), breast (effect size = -0.93), liver (effect size = -2.29), stomach (effect size = -1.59), and prostate (effect size = -1.36) cancers; elevation was not proven in any tumor. More specific zinc patterns are evident at tissue level, showing increase in breast cancer tissue (effect size = 1.80) and decrease in prostatic (effect size = -3.90), liver (effect size = -8.26), lung (effect size = -3.12), and thyroid cancer (effect size = -2.84). The rest of the included tumors brought ambiguous results, both in serum and tissue zinc levels across the studies. The association between zinc level and stage or grade of tumor has not been revealed by meta-regression. CONCLUSION: This study provides evidence on cancer-specific tissue zinc level alteration. Although serum zinc decrease was associated with most tumors mentioned herein, further--prospective--studies are needed.
- MeSH
- epitel patologie MeSH
- lidé MeSH
- nádory krev patologie MeSH
- statistické modely MeSH
- zinek krev MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Názvy látek
- zinek MeSH
Kinetin (N6-furfuryladenine) belongs to a group of plant growth hormones involved in cell division, differentiation and other physiological processes. One of the possible ways to obtain biologically active compounds is to complex biologically relevant natural compounds to suitable metal atoms. In this work, two structural groups of Zn(II) complexes [Zn(L(n))2Cl2]·Solv (1-5) and [Zn(HL(n))Cl3] · xL(n) (6-7); n=1-5, Solv=CH3OH for 1 and 2H2O for 2; x =1 for 6 and 2 for 7; involving a phytohormone kinetin and its derivatives (L(n)) were evaluated for their ability to modulate secretion of tumour necrosis factor (TNF)-α, interleukin (IL)-1β and matrix metalloproteinase (MMP)-2 in a lipopolysaccharide (LPS)-activated macrophage-like THP-1 cell model. The penetration of the complexes to cells was also detected. The mechanism of interactions of the zinc(II) complexes with a fluorescent sensor N-(6-methoxy-8-quinolyl)-p-toluene sulphonamide (TSQ) and sulfur-containing biomolecules (l-cysteine and reduced glutathione) was studied by electrospray-ionization mass spectrometry and flow-injection analysis with fluorescence detection. The present study showed that the tested complexes exhibited a low cytotoxic effect on the THP-1 cell line (IC50>40 µM), apart from complex 4, with an IC50=10.9 ± 1.1 µM. Regarding the inflammation-related processes, the Zn(II) complexes significantly decreased IL-1β production by a factor of 1.47-2.22 compared with the control (DMSO), but did not affect TNF-α and MMP-2 secretions. However, application of the Zn(II) complexes noticeably changed the pro-MMP-2/MMP-2 ratio towards a higher amount of maturated MMP-2, when they induced a 4-times higher production of maturated MMP-2 in comparison with the vehicle-treated cells under LPS stimulation. These results indicated that the complexes are able to modulate an inflammatory response by influencing secretion and activity of several inflammation-related cytokines and enzymes.
- MeSH
- aktivace makrofágů účinky léků MeSH
- aminochinoliny MeSH
- antiflogistika chemická syntéza farmakologie MeSH
- biologický transport MeSH
- chloridy chemie MeSH
- cystein chemie MeSH
- exprese genu účinky léků MeSH
- fluorescenční barviva MeSH
- glutathion chemie MeSH
- interleukin-1beta antagonisté a inhibitory genetika metabolismus MeSH
- kationty dvojmocné MeSH
- kinetin chemie MeSH
- komplexní sloučeniny chemická syntéza farmakologie MeSH
- lidé MeSH
- lipopolysacharidy farmakologie MeSH
- makrofágy cytologie účinky léků metabolismus MeSH
- matrixová metaloproteinasa 2 genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- TNF-alfa genetika metabolismus MeSH
- tosylové sloučeniny MeSH
- viabilita buněk účinky léků MeSH
- zinek chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminochinoliny MeSH
- antiflogistika MeSH
- chloridy MeSH
- cystein MeSH
- fluorescenční barviva MeSH
- glutathion MeSH
- interleukin-1beta MeSH
- kationty dvojmocné MeSH
- kinetin MeSH
- komplexní sloučeniny MeSH
- lipopolysacharidy MeSH
- matrixová metaloproteinasa 2 MeSH
- N-(6-methoxy-8-quinolyl)-4-toluenesulfonamide MeSH Prohlížeč
- TNF-alfa MeSH
- tosylové sloučeniny MeSH
- zinek MeSH
Free radicals are chemical particles containing one or more unpaired electrons, which may be part of the molecule. They cause the molecule to become highly reactive. The free radicals are also known to play a dual role in biological systems, as they can be either beneficial or harmful for living systems. It is clear that there are numerous mechanisms participating on the protection of a cell against free radicals. In this review, our attention is paid to metallothioneins (MTs) as small, cysteine-rich and heavy metal-binding proteins, which participate in an array of protective stress responses. The mechanism of the reaction of metallothioneins with oxidants and electrophilic compounds is discussed. Numerous reports indicate that MT protects cells from exposure to oxidants and electrophiles, which react readily with sulfhydryl groups. Moreover, MT plays a key role in regulation of zinc levels and distribution in the intracellular space. The connections between zinc, MT and cancer are highlighted.
- Publikační typ
- časopisecké články MeSH