Nejvíce citovaný článek - PubMed ID 21155989
Interference of Bifidobacterium choerinum or Escherichia coli Nissle 1917 with Salmonella Typhimurium in gnotobiotic piglets correlates with cytokine patterns in blood and intestine
The alarming prevalence of inflammatory bowel disease (IBD) in early childhood is associated with imbalances in the microbiome, the immune response, and environmental factors. Some pathogenic Escherichia coli (E. coli) strains have been found in IBD patients, where they may influence disease progression. Therefore, the discovery of new harmful bacterial strains that have the potential to drive the inflammatory response is of great importance. In this study, we compared the immunomodulatory properties of two E. coli strains of serotype O6: the probiotic E. coli Nissle 1917 and the uropathogenic E. coli O6:K13:H1. Using the epithelial Caco-2 cell line, we investigated the different abilities of the strains to adhere to and invade epithelial cells. We confirmed the potential of E. coli Nissle 1917 to modulate the Th1 immune response in a specific manner in an in vitro setting by stimulating mouse bone marrow-derived dendritic cells (BM-DCs). In gnotobiotic in vivo experiments, we demonstrated that neonatal colonization with E. coli Nissle 1917 achieves a stable high concentration in the intestine and protects mice from the progressive effect of E. coli O6:K13:H1 in developing ulcerative colitis in an experimental model. In contrast, a single-dose treatment with E. coli Nissle 1917 is ineffective in achieving such high concentrations and does not protect against DSS-induced ulcerative colitis in mice neonatally colonized with pathobiont E. coli O6:K13:H1. Despite the stable coexistence of both E. coli strains in the intestinal environment of the mice, we demonstrated a beneficial competitive interaction between the early colonizing E. coli Nissle 1917 and the late-arriving strain O6:K13:H1, suggesting its anti-inflammatory potential for the host. This study highlights the importance of the sequence of bacterial colonization, which influences the development of the immune response in the host gut and potentially impacts future quality of life.
- Klíčová slova
- DSS-experimental colitis, Escherichia coli, immune modulation, mouse model, priority effect,
- Publikační typ
- časopisecké články MeSH
Gnotobiotic (GN) animals with simple and defined microbiota can help to elucidate host-pathogen interferences. Hysterectomy-derived germ-free (GF) minipigs were associated at 4 and 24 h post-hysterectomy with porcine commensal mucinolytic Bifidobacterium boum RP36 (RP36) strain or non-mucinolytic strain RP37 (RP37) or at 4 h post-hysterectomy with Lactobacillus amylovorus (LA). One-week-old GN minipigs were infected with Salmonella Typhimurium LT2 strain (LT2). We monitored histological changes in the ileum, mRNA expression of Toll-like receptors (TLRs) 2, 4, and 9 and their related molecules lipopolysaccharide-binding protein (LBP), coreceptors MD-2 and CD14, adaptor proteins MyD88 and TRIF, and receptor for advanced glycation end products (RAGE) in the ileum and colon. LT2 significantly induced expression of TLR2, TLR4, MyD88, LBP, MD-2, and CD14 in the ileum and TLR4, MyD88, TRIF, LBP, and CD14 in the colon. The LT2 infection also significantly increased plasmatic levels of inflammatory markers interleukin (IL)-6 and IL-12/23p40. The previous colonization with RP37 alleviated damage of the ileum caused by the Salmonella infection, and RP37 and LA downregulated plasmatic levels of IL-6. A defined oligo-microbiota composed of bacterial species with selected properties should probably be more effective in downregulating inflammatory response than single bacteria.
- Klíčová slova
- Bifidobacterium, Lactobacillus, Salmonella Typhimurium, Toll-like receptor, cytokines, gnotobiotic minipig, lipopolysaccharide,
- Publikační typ
- časopisecké články MeSH
A balanced microbiota is a main prerequisite for the host's health. The aim of the present work was to develop defined pig microbiota (DPM) with the potential ability to protect piglets against infection with Salmonella Typhimurium, which causes enterocolitis. A total of 284 bacterial strains were isolated from the colon and fecal samples of wild and domestic pigs or piglets using selective and nonselective cultivation media. Isolates belonging to 47 species from 11 different genera were identified by MALDI-TOF mass spectrometry (MALDI-TOF MS). The bacterial strains for the DPM were selected for anti-Salmonella activity, ability to aggregate, adherence to epithelial cells, and to be bile and acid tolerant. The selected combination of 9 strains was identified by sequencing of the 16S rRNA gene as Bacillus sp., Bifidobacterium animalis subsp. lactis, B. porcinum, Clostridium sporogenes, Lactobacillus amylovorus, L. paracasei subsp. tolerans, Limosilactobacillus reuteri subsp. suis, and Limosilactobacillus reuteri (two strains) did not show mutual inhibition, and the mixture was stable under freezing for at least 6 months. Moreover, strains were classified as safe without pathogenic phenotype and resistance to antibiotics. Future experiments with Salmonella-infected piglets are needed to test the protective effect of the developed DPM.
- Klíčová slova
- bacterial consortium, gnotobiotic piglets, intestinal pathogens, pig intestinal bacteria, probiotic properties testing,
- Publikační typ
- časopisecké články MeSH
Preterm germ-free piglets were monoassociated with probiotic Bifidobacterium animalis subsp. lactis BB-12 (BB12) to verify its safety and to investigate possible protection against subsequent infection with Salmonella Typhimurium strain LT2 (LT2). Clinical signs of salmonellosis, bacterial colonization in the intestine, bacterial translocation to mesenteric lymph nodes (MLN), blood, liver, spleen, and lungs, histopathological changes in the ileum, claudin-1 and occludin mRNA expression in the ileum and colon, intestinal and plasma concentrations of IL-8, TNF-α, and IL-10 were evaluated. Both BB12 and LT2 colonized the intestine of the monoassociated piglets. BB12 did not translocate in the BB12-monoassociated piglets. BB12 was detected in some cases in the MLN of piglets, consequently infected with LT2, but reduced LT2 counts in the ileum and liver of these piglets. LT2 damaged the luminal structure of the ileum, but a previous association with BB12 mildly alleviated these changes. LT2 infection upregulated claudin-1 mRNA in the ileum and colon and downregulated occludin mRNA in the colon. Infection with LT2 increased levels of IL-8, TNF-α, and IL-10 in the intestine and plasma, and BB12 mildly downregulated them compared to LT2 alone. Despite reductions in bacterial translocation and inflammatory cytokines, clinical signs of LT2 infection were not significantly affected by the probiotic BB12. Thus, we hypothesize that multistrain bacterial colonization of preterm gnotobiotic piglets may be needed to enhance the protective effect against the infection with S. Typhimurium LT2.
- Klíčová slova
- Bifidobacterium animalis subsp. lactis BB-12, Salmonella Typhimurium, immunocompromised, inflammatory cytokines, intestinal barrier, preterm host,
- Publikační typ
- časopisecké články MeSH
Non-typhoidal Salmonella serovars are worldwide spread foodborne pathogens that cause diarrhea in humans and animals. Colonization of gnotobiotic piglet intestine with porcine indigenous mucinolytic Bifidobacterium boum RP36 strain and non-mucinolytic strain RP37 and their interference with Salmonella Typhimurium infection were compared. Bacterial interferences and impact on the host were evaluated by clinical signs of salmonellosis, bacterial translocation, goblet cell count, mRNA expression of mucin 2, villin, claudin-1, claudin-2, and occludin in the ileum and colon, and plasmatic levels of inflammatory cytokines IL-8, TNF-α, and IL-10. Both bifidobacterial strains colonized the intestine comparably. Neither RP36 nor RP37 B. boum strains effectively suppressed signs of salmonellosis. Both B. boum strains suppressed the growth of S. Typhimurium in the ileum and colon. The mucinolytic RP36 strain increased the translocation of S. Typhimurium into the blood, liver, and spleen.
- Klíčová slova
- Bifidobacterium boum, Salmonella Typhimurium, germ-free, gnotobiotic, goblet cells, mucin, mucinolytic, piglet,
- Publikační typ
- časopisecké články MeSH
Salmonella Typhimurium is a Gram-negative bacterium that causes enterocolitis in humans and pigs. Lipopolysaccharide (LPS) is a component of the outer leaflet of Gram-negative bacteria that provokes endotoxin shock. LPS can be synthesized completely or incompletely and creates S (smooth) or R (rough) chemotypes. Toll-like receptors (TLR) 2, 4, and 9 initiate an inflammatory reaction to combat bacterial infections. We associated/challenged one-week-old gnotobiotic piglets with wild-type S. Typhimurium with S chemotype or its isogenic ∆rfa mutants with R chemotype LPS. The wild-type S. Typhimurium induced TLR2 and TLR4 mRNA expression but not TLR9 mRNA expression in the ileum and colon of one-week-old gnotobiotic piglets 24 h after challenge. The TLR2 and TLR4 stimulatory effects of the S. Typhimurium ∆rfa mutants were related to the completeness of their LPS chain. The transcription of IL-12/23 p40, IFN-γ, and IL-6 in the intestine and the intestinal and plasmatic levels of IL-12/23 p40 and IL-6 but not IFN-γ were related to the activation of TLR2 and TLR4 signaling pathways. The avirulent S. Typhimurium ∆rfa mutants are potentially useful for modulation of the TLR2 and TLR4 signaling pathways to protect the immunocompromised gnotobiotic piglets against subsequent infection with the virulent S. Typhimurium.
- Klíčová slova
- Salmonella Typhimurium, chemotype, endotoxin, germ-free, gnotobiotic, lipopolysaccharide, piglet, toll-like receptor 4, ∆rfa mutant,
- MeSH
- gnotobiologické modely fyziologie MeSH
- ileum metabolismus mikrobiologie MeSH
- kolon metabolismus mikrobiologie MeSH
- miniaturní prasata MeSH
- mutace fyziologie MeSH
- prasata MeSH
- Salmonella typhimurium genetika izolace a purifikace MeSH
- salmonelóza genetika metabolismus patologie MeSH
- toll-like receptor 4 metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- toll-like receptor 4 MeSH
Non-typhoid Salmonellae are worldwide spread food-borne pathogens that cause diarrhea in humans and animals. Their multi-drug resistances require alternative ways to combat this enteric pathogen. Mono-colonization of a gnotobiotic piglet gastrointestinal tract with commensal lactobacilli Lactobacillus amylovorus and Lactobacillus mucosae and with probiotic E. coli Nissle 1917 and their interference with S. Typhimurium infection was compared. The impact of bacteria and possible protection against infection with Salmonella were evaluated by clinical signs, bacterial translocation, intestinal histology, mRNA expression of villin, claudin-1, claudin-2, and occludin in the ileum and colon, and local intestinal and systemic levels of inflammatory cytokines IL-8, TNF-α, and IL-10. Both lactobacilli colonized the gastrointestinal tract in approximately 100× lower density compare to E. coli Nissle and S. Typhimurium. Neither L. amylovorus nor L. mucosae suppressed the inflammatory reaction caused by the 24 h infection with S. Typhimurium. In contrast, probiotic E. coli Nissle 1917 was able to suppress clinical signs, histopathological changes, the transcriptions of the proteins, and the inductions of the inflammatory cytokines. Future studies are needed to determine whether prebiotic support of the growth of lactobacilli and multistrain lactobacilli inoculum could show higher protective effects.
- Klíčová slova
- E. coli Nissle 1917, Lactobacillus amylovorus, Lactobacillus mucosae, Salmonella Typhimurium, cytokine, food-borne pathogen, gnotobiotic piglet, intestine,
- Publikační typ
- časopisecké články MeSH
A balanced microbiota of the gastrointestinal tract (GIT) is a prerequisite for a healthy host. The GIT microbiota in preterm infants is determined by the method of delivery and nutrition. Probiotics can improve the GIT microbiota balance and suitable animal models are required to verify their harmlessness. Preterm gnotobiotic piglets were colonized with Lactobacillus rhamnosus GG (LGG) to evaluate its safety and possible protective action against infection with an enteric pathogen, Salmonella Typhimurium (ST). Clinical signs (anorexia, somnolence, fever and diarrhea), bacterial interference and translocation, intestinal histopathology, transcriptions of claudin-1, occludin and interferon (IFN)-γ, intestinal and systemic protein levels of interleukin (IL)-8, IL-12/23 p40 and IFN-γ were compared among (i) germ-free, (ii) LGG-colonized, (iii) ST-infected and (iv) LGG-colonized and subsequently ST-infected piglets for 24 h. Both LGG and ST-colonized the GIT; LGG translocated in some cases into mesenteric lymph nodes and the spleen but did not cause bacteremia and clinical changes. ST caused clinical signs of gastroenteritis, translocated into mesenteric lymph nodes, the spleen, liver and blood, increased claudin-1 and IFN-γ transcriptions, but decreased occludin transcription and increased local and systemic levels of IL-8 and IL-12/23 p40. Previous colonization with LGG reduced ST colonization in the jejunum and translocation into the liver, spleen and blood. It partially ameliorated histopathological changes in the intestine, reduced IL-8 levels in the jejunum and plasma and IL-12/23 p40 in the jejunum. The preterm gnotobiotic piglet model of the vulnerable preterm immunocompromised infant is useful to verify the safety of probiotics and evaluate their protective effect.
- Klíčová slova
- Lactobacillus rhamnosusGG, Salmonella Typhimurium, bacterial interference, gnotobiotic piglets, preterm,
- MeSH
- bakteriální translokace MeSH
- cytokiny analýza MeSH
- gnotobiologické modely MeSH
- Lacticaseibacillus rhamnosus * MeSH
- prasata MeSH
- předčasný porod mikrobiologie MeSH
- probiotika farmakologie MeSH
- proteiny těsného spoje genetika MeSH
- Salmonella typhimurium růst a vývoj MeSH
- střeva mikrobiologie patologie MeSH
- střevní mikroflóra MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- proteiny těsného spoje MeSH
OBJECTIVES: Alarmin high mobility group box 1 (HMGB1) is essential for correct DNA folding and transcription. It can be released from damaged cells or secreted by stimulated cells. HMGB1 has been detected in serum or plasma as a late marker of sepsis, but its suitability as a marker of sepsis has been disputed. METHODS: One-week-old germ-free piglets were orally infected/colonized with enteric bacterial pathogens (Salmonella Typhimurium or Escherichia coli O55) or with probiotic bacteria (E. coli Nissle 1917) for 24 h. The transcriptions of HMGB1, interleukin (IL)-8, tumor necrosis factor (TNF)-α, and IL-10 (quantitative reverse transcription and polymerase chain reaction), their protein levels (ELISA), and clinical state of the piglets (somnolence, anorexia, diarrhea, tachycardia, tachypnea, and tremor) were estimated. RESULTS: The piglets infected with enteric pathogens suffered from infections. HMGB1 was transcribed in the terminal ileum constitutively, regardless of any bacterial presence. In contrast, the transcription of cytokines was upregulated by virulent bacteria. HMGB1, IL-8, and TNF-α levels in the ileum were increased by both enteric pathogens, while IL-10 levels increased in E. coli O55-infected piglets only. HMGB1 significantly increased in the plasma of piglets infected with virulent E. coli only, but cytokine levels were in most cases increased by both virulent bacteria. HMGB1 and cytokine levels in ileum lavages and plasma of piglets colonized with probiotic E. coli remained comparable to those of the non-stimulated germ-free piglets. CONCLUSION: The local and systemic expression of HMGB1, its relationship to the inflammatory cytokines, and clinical findings showed HMGB1 as a suitable marker of severity of sepsis in the gnotobiotic piglet infection model.
- MeSH
- bakteriální infekce krev imunologie mikrobiologie MeSH
- biologické markery krev MeSH
- ELISA MeSH
- Escherichia coli růst a vývoj MeSH
- gnotobiologické modely * MeSH
- ileum metabolismus mikrobiologie MeSH
- interleukin-10 krev MeSH
- interleukin-8 krev MeSH
- modely nemocí na zvířatech MeSH
- novorozená zvířata krev imunologie mikrobiologie MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- prasata MeSH
- protein HMGB1 * krev MeSH
- průjem MeSH
- Salmonella typhimurium růst a vývoj MeSH
- sepse krev imunologie mikrobiologie MeSH
- stupeň závažnosti nemoci MeSH
- tachykardie MeSH
- TNF-alfa krev MeSH
- tremor MeSH
- zánět krev imunologie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- interleukin-10 MeSH
- interleukin-8 MeSH
- protein HMGB1 * MeSH
- TNF-alfa MeSH