Most cited article - PubMed ID 22327909
Molecular insights into X;BTA5 chromosome rearrangements in the tribe Antilopini (Bovidae)
Chromosomal rearrangements are often associated with playing a role in the speciation process. However, the underlying mechanism that favors the genetic isolation associated with chromosomal changes remains elusive. In this sense, the genus Mazama is recognized by its high level of karyotype diversity among species with similar morphology. A cryptic species complex has been identified within the genus, with the red brocket deer (Mazama americana and Mazama rufa) being the most impressive example. The chromosome variation was clustered in cytotypes with diploid numbers ranging from 42 to 53 and was correlated with geographical location. We conducted an analysis of chromosome evolution of the red brocket deer complex using comparative chromosome painting and Bacterial Artificial Chromosome (BAC) clones among different cytotypes. The aim was to deepen our understanding of the karyotypic relationships within the red brocket, thereby elucidating the significant chromosome variation among closely related species. This underscores the significance of chromosome changes as a key evolutionary process shaping their genomes. The results revealed the presence of three distinct cytogenetic lineages characterized by significant karyotypic divergence, suggesting the existence of efficient post-zygotic barriers. Tandem fusions constitute the main mechanism driving karyotype evolution, following a few centric fusions, inversion X-autosomal fusions. The BAC mapping has improved our comprehension of the karyotypic relationships within the red brocket deer complex, prompting questions regarding the role of these changes in the speciation process. We propose the red brocket as a model group to investigate how chromosomal changes contribute to isolation and explore the implications of these changes in taxonomy and conservation.
- Keywords
- Chromosome evolution, Chromosome rearrangements, FISH, Molecular cytogenetics, Neotropical deer, Cervidae,
- MeSH
- Karyotype * MeSH
- Karyotyping * MeSH
- Chromosome Painting MeSH
- Evolution, Molecular * MeSH
- Chromosomes, Artificial, Bacterial genetics MeSH
- Deer * genetics classification MeSH
- Genetic Speciation * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
Repetitive sequences form a substantial and still enigmatic part of the mammalian genome. We isolated repetitive DNA blocks of the X chromosomes of three species of the family Bovidae: Kobus defassa (KDEXr sequence), Bos taurus (BTAXr sequence) and Antilope cervicapra (ACEXr sequence). The copy numbers of the isolated sequences were assessed using qPCR, and their chromosomal localisations were analysed using FISH in ten bovid tribes and in outgroup species. Besides their localisation on the X chromosome, their presence was also revealed on the Y chromosome and autosomes in several species. The KDEXr sequence abundant in most Bovidae species also occurs in distant taxa (Perissodactyla and Carnivora) and seems to be evolutionarily older than BTAXr and ACEXr. The ACEXr sequence, visible only in several Antilopini species using FISH, is probably the youngest, and arised in an ancestor common to Bovidae and Cervidae. All three repetitive sequences analysed in this study are interspersed among gene-rich regions on the X chromosomes, apparently preventing the crossing-over in their close vicinity. This study demonstrates that repetitive sequences on the X chromosomes have undergone a fast evolution, and their variation among related species can be beneficial for evolutionary studies.
- Keywords
- Bovidae, FISH, X chromosome, laser microdissection, qPCR, repetitive sequence, sequence analysis,
- MeSH
- Antelopes * genetics MeSH
- Y Chromosome genetics MeSH
- DNA MeSH
- Humans MeSH
- Chromosomes, Human, X MeSH
- Repetitive Sequences, Nucleic Acid genetics MeSH
- Cattle genetics MeSH
- Deer * genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Cattle genetics MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
We identified a small, supernumerary marker chromosome (sSMC) in two phenotypically normal Asian elephants (Elephas maximus): a female (2n = 57,XX,+mar) and her male offspring (2n = 57,XY,+mar). sSMCs are defined as structurally abnormal chromosomes that cannot be identified by conventional banding analysis since they are usually small and often lack distinct banding patterns. Although current molecular techniques can reveal their origin, the mechanism of their formation is not yet fully understood. We determined the origin of the marker using a suite of conventional and molecular cytogenetic approaches that included (a) G- and C-banding, (b) AgNOR staining, (c) preparation of a DNA clone using laser microdissection of the marker chromosome, (d) FISH with commercially available human painting and telomeric probes, and (e) FISH with centromeric DNA derived from the centromeric regions of a marker-free Asian elephant. Moreover, we present new information on the location and number of NORs in Asian and savanna elephants. We show that the metacentric marker was composed of heterochromatin with NORs at the terminal ends, originating most likely from the heterochromatic region of chromosome 27. In this context, we discuss the possible mechanism of marker formation. We also discuss the similarities between sSMCs and B chromosomes and whether the marker chromosome presented here could evolve into a B chromosome in the future.
- Keywords
- Asian elephant, FISH, NOR, heterochromatin, karyotype, laser microdissection, sSMC, savanna elephant, small supernumerary marker chromosome,
- Publication type
- Journal Article MeSH
The family Cervidae groups a range of species with an increasing economic significance. Their karyotypes share 35 evolutionary conserved chromosomal segments with cattle (Bos taurus). Recent publication of the annotated red deer (Cervus elaphus) whole genome assembly (CerEla1.0) has provided a basis for advanced genetic studies. In this study, we compared the red deer CerEla1.0 and bovine ARS-UCD1.2 genome assembly and used fluorescence in situ hybridization with bovine BAC probes to verify the homology between bovine and deer chromosomes, determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds and specified positions of the cervid evolutionary chromosome breakpoints. In addition, we revealed several incongruences between the current deer and bovine genome assemblies that were shown to be caused by errors in the CerEla1.0 assembly. Finally, we verified the centromere-to-centromere orientation of evolutionarily fused chromosomes in seven additional deer species, giving a support to previous studies on their chromosome evolution.
- Keywords
- BAC mapping, FISH, chromosome fission, chromosome fusion, comparative cytogenetics, genome assembly, karyotype,
- Publication type
- Journal Article MeSH
Chromosome structural change has long been considered important in the evolution of post-zygotic reproductive isolation. The premise that karyotypic variation can serve as a possible barrier to gene flow is founded on the expectation that heterozygotes for structurally distinct chromosomal forms would be partially sterile (negatively heterotic) or show reduced recombination. We report the outcome of a detailed comparative molecular cytogenetic study of three antelope species, genus Raphicerus, that have undergone a rapid radiation. The species are largely conserved with respect to their euchromatic regions but the X chromosomes, in marked contrast, show distinct patterns of heterochromatic amplification and localization of repeats that have occurred independently in each lineage. We argue a novel hypothesis that postulates that the expansion of heterochromatic blocks in the homogametic sex can, with certain conditions, contribute to post-zygotic isolation. i.e., female hybrid incompatibility, the converse of Haldane's rule. This is based on the expectation that hybrids incur a selective disadvantage due to impaired meiosis resulting from the meiotic checkpoint network's surveillance of the asymmetric expansions of heterochromatic blocks in the homogametic sex. Asynapsis of these heterochromatic regions would result in meiotic silencing of unsynapsed chromatin and, if this persists, germline apoptosis and female infertility.
- MeSH
- Antelopes classification genetics MeSH
- X Chromosome ultrastructure MeSH
- Heterozygote MeSH
- Hybridization, Genetic MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotype * MeSH
- Meiosis MeSH
- Models, Genetic * MeSH
- Recombination, Genetic MeSH
- Reproductive Isolation * MeSH
- Sex Factors MeSH
- Gene Flow MeSH
- Genetic Speciation * MeSH
- Infertility, Female genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Africa MeSH
The Cervidae family comprises more than fifty species divided into three subfamilies: Capreolinae, Cervinae and Hydropotinae. A characteristic attribute for the species included in this family is the great karyotype diversity, with the chromosomal numbers ranging from 2n = 6 observed in female Muntiacus muntjak vaginalis to 2n = 70 found in Mazama gouazoubira as a result of numerous Robertsonian and tandem fusions. This work reports chromosomal homologies between cattle (Bos taurus, 2n = 60) and nine cervid species using a combination of whole chromosome and region-specific paints and BAC clones derived from cattle. We show that despite the great diversity of karyotypes in the studied species, the number of conserved chromosomal segments detected by 29 cattle whole chromosome painting probes was 35 for all Cervidae samples. The detailed analysis of the X chromosomes revealed two different morphological types within Cervidae. The first one, present in the Capreolinae is a sub/metacentric X with the structure more similar to the bovine X. The second type found in Cervini and Muntiacini is an acrocentric X which shows rearrangements in the proximal part that have not yet been identified within Ruminantia. Moreover, we characterised four repetitive sequences organized in heterochromatic blocks on sex chromosomes of the reindeer (Rangifer tarandus). We show that these repeats gave no hybridization signals to the chromosomes of the closely related moose (Alces alces) and are therefore specific to the reindeer.
Homologous chromosomes exchange genetic information through recombination during meiosis, a process that increases genetic diversity, and is fundamental to sexual reproduction. In an attempt to shed light on the dynamics of mammalian recombination and its implications for genome organization, we have studied the recombination characteristics of 112 individuals belonging to 28 different species in the family Bovidae. In particular, we analyzed the distribution of RAD51 and MLH1 foci during the meiotic prophase I that serve, respectively, as proxies for double-strand breaks (DSBs) which form in early stages of meiosis and for crossovers. In addition, synaptonemal complex length and meiotic DNA loop size were estimated to explore how genome organization determines DSBs and crossover patterns. We show that although the number of meiotic DSBs per cell and recombination rates observed vary between individuals of the same species, these are correlated with diploid number as well as with synaptonemal complex and DNA loop sizes. Our results illustrate that genome packaging, DSB frequencies, and crossover rates tend to be correlated, while meiotic chromosomal axis length and DNA loop size are inversely correlated in mammals. Moreover, axis length, DSB frequency, and crossover frequencies all covary, suggesting that these correlations are established in the early stages of meiosis.
- Keywords
- Bovidae, Crossovers, MLH1, Meiosis, RAD51, Recombination,
- MeSH
- DNA Breaks, Double-Stranded MeSH
- Meiosis * MeSH
- MutL Protein Homolog 1 MeSH
- Mice MeSH
- Ruminants genetics metabolism MeSH
- Recombination, Genetic * MeSH
- Rad51 Recombinase MeSH
- Chromosomes, Mammalian metabolism ultrastructure MeSH
- Synaptonemal Complex metabolism ultrastructure MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- MutL Protein Homolog 1 MeSH
- Rad51 Recombinase MeSH
The recurrent occurrence of sex-autosome translocations during mammalian evolution suggests common mechanisms enabling a precise control of meiotic synapsis, recombination and inactivation of sex chromosomes. We used immunofluorescence and FISH to study the meiotic behaviour of sex chromosomes in six species of Bovidae with evolutionary sex-autosome translocations (Tragelaphus strepsiceros, Taurotragus oryx, Tragelaphus imberbis, Tragelaphus spekii, Gazella leptoceros and Nanger dama ruficollis). The autosomal regions of fused sex chromosomes showed normal synapsis with their homologous counterparts. Synapsis in the pseudoautosomal region (PAR) leads to the formation of characteristic bivalent (in T. imberbis and T. spekii with X;BTA13/Y;BTA13), trivalent (in T. strepsiceros and T. oryx with X/Y;BTA13 and G. leptoceros with X;BTA5/Y) and quadrivalent (in N. dama ruficollis with X;BTA5/Y;BTA16) structures at pachynema. However, when compared with other mammals, the number of pachynema lacking MLH1 foci in the PAR was relatively high, especially in T. imberbis and T. spekii, species with both sex chromosomes involved in sex autosome translocations. Meiotic transcriptional inactivation of the sex-autosome translocations assessed by γH2AX staining was restricted to their gonosomal regions. Despite intraspecies differences, the evolutionary fixation of sex-autosome translocations among bovids appears to involve general mechanisms ensuring sex chromosome pairing, synapsis, recombination and inactivation.
- Keywords
- Bovidae, Histone modification, Meiosis, Recombination, Sex-autosome translocation, Sex-chromosome inactivation, Synapsis, X chromosome, Y chromosome,
- MeSH
- Fluorescent Antibody Technique MeSH
- In Situ Hybridization, Fluorescence MeSH
- Chromosome Painting MeSH
- Meiosis genetics MeSH
- Chromosome Pairing genetics MeSH
- Sex Chromosomes genetics MeSH
- Ruminants genetics MeSH
- Chromosome Segregation genetics MeSH
- Translocation, Genetic * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The evolutionary clade comprising Nanger, Eudorcas, Gazella, and Antilope, defined by an X;BTA5 translocation, is noteworthy for the many autosomal Robertsonian fusions that have driven the chromosome number variation from 2n = 30 observed in Antilope cervicapra, to the 2n = 58 in present Eudorcas thomsoni and Eudorcas rufifrons. This work reports the phylogenetic relationships within the Antilopini using comprehensive cytogenetic data from A. cervicapra, Gazella leptoceros, Nanger dama ruficollis, and E. thomsoni together with corrected karyotypic data from an additional nine species previously reported in the literature. Fluorescence in situ hybridization using BAC and microdissected cattle painting probes, in conjunction with differential staining techniques, provide the following: (i) a detailed analysis of the E. thomsoni chromosomes, (ii) the identification and fine-scale analysis the BTA3 orthologue in species of Antilopini, and (iii) the location of the pseudoautosomal regions on sex chromosomes of the four species. Our phylogenetic analysis of the chromosomal data supports monophyly of Nanger and Eudorcas and suggests an affiliation between A. cervicapra and some of the Gazella species. This renders Gazella paraphyletic and emphasizes a closer relationship between Antilope and Gazella than what has previously been considered.
- MeSH
- Antelopes classification genetics MeSH
- Biological Evolution MeSH
- Centromere genetics MeSH
- Phylogeny MeSH
- Gene Rearrangement MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotyping MeSH
- Cloning, Molecular MeSH
- Chromosome Painting MeSH
- Evolution, Molecular MeSH
- Sex Chromosomes genetics MeSH
- DNA, Satellite genetics MeSH
- Chromosomes, Mammalian genetics MeSH
- Cattle MeSH
- Translocation, Genetic MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Cattle MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Satellite MeSH
Satellite sequences present in the centromeric and pericentric regions of chromosomes represent useful source of information. Changes in satellite DNA composition may coincide with the speciation and serve as valuable markers of phylogenetic relationships. Here, we examined satellite DNA clones isolated by laser microdissection of centromeric regions of 38 bovid species and categorized them into three types. Sat I sequences from members of Bovini/Tragelaphini/Boselaphini are similar to the well-documented 1.715 sat I DNA family. Sat I DNA from Caprini/Alcelaphini/Hippotragini/Reduncini/Aepycerotini/Cephalophini/Antilopini/Neotragini/Oreotragini form the second group homologous to the common 1.714 sat I DNA. The analysis of sat II DNAs isolated in our study confirmed conservativeness of these sequences within Bovidae. Newly described centromeric clones from Madoqua kirkii and Strepsiceros strepsiceros were similar in length and repetitive tandem arrangement but showed no similarity to any other satellite DNA in the GenBank database. Phylogenetic analysis of sat I sequences isolated in our study from 38 bovid species enabled the description of relationships at the subfamily and tribal levels. The maximum likelihood and Bayesian inference analyses showed a basal position of sequences from Oreotragini in the subfamily Antilopinae. According to the Bayesian inference analysis based on the indels in a partitioned mixed model, Antilopinae satellite DNA split into two groups with those from Neotragini as a basal tribe, followed by a stepwise, successive branching of Cephalophini, Aepycerotini and Antilopini sequences. In the second group, Reduncini sequences were basal followed by Caprini, Alcelaphini and Hippotragini.
- MeSH
- Species Specificity MeSH
- Phylogeny * MeSH
- Genetic Variation MeSH
- Animals, Domestic MeSH
- In Situ Hybridization, Fluorescence MeSH
- Molecular Sequence Data MeSH
- Repetitive Sequences, Nucleic Acid genetics MeSH
- DNA, Satellite genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Sequence Homology, Nucleic Acid MeSH
- Cattle genetics MeSH
- Animals MeSH
- Check Tag
- Cattle genetics MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Satellite MeSH