Nejvíce citovaný článek - PubMed ID 22450044
Circular dichroism and guanine quadruplexes
G-quadruplexes (G4s) formed within RNA are emerging as promising targets for therapeutic intervention in cancer, neurodegenerative disorders and infectious diseases. Sequences containing a succession of short GG blocks, or uneven G-tract lengths unable to form three-tetrad G4s (GG motifs), are overwhelmingly more frequent than canonical motifs involving multiple GGG blocks. We recently showed that DNA is not able to form stable two-tetrad intramolecular parallel G4s. Whether RNA GG motifs can form intramolecular G4s under physiological conditions and play regulatory roles remains a burning question. In this study, we performed a systematic analysis and experimental evaluation of a number of biologically important RNA regions involving RNA GG motifs. We show that most of these motifs do not form stable intramolecular G4s but need to dimerize to form stable G4 structures. The strong tendency of RNA GG motif G4s to associate may participate in RNA-based aggregation under conditions of cellular stress.
- MeSH
- dimerizace MeSH
- G-kvadruplexy * MeSH
- genetická transkripce MeSH
- lidé MeSH
- nukleotidové motivy * MeSH
- RNA * chemie metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA * MeSH
Telomerase RNA (TR) carries the template for synthesis of telomere DNA and provides a scaffold for telomerase assembly. Fungal TRs are long and have been compared to higher eukaryotes, where they show considerable diversity within phylogenetically close groups. TRs of several Saccharomycetaceae were recently identified, however, many of these remained uncharacterised in the template region. Here we show that this is mainly due to high variability in telomere sequence. We predicted the telomere sequences using Tandem Repeats Finder and then we identified corresponding putative template regions in TR candidates. Remarkably long telomere units and the corresponding putative TRs were found in Tetrapisispora species. Notably, variable lengths of the annealing sequence of the template region (1-10 nt) were found. Consequently, species with the same telomere sequence may not harbour identical TR templates. Thus, TR sequence alone can be used to predict a template region and telomere sequence, but not to determine these exactly. A conserved feature of telomere sequences, tracts of adjacent Gs, led us to test the propensity of individual telomere sequences to form G4. The results show highly diverse values of G4-propensity, indicating the lack of ubiquitous conservation of this feature across Saccharomycetaceae.
- MeSH
- benzothiazoly metabolismus MeSH
- fluorescence MeSH
- G-kvadruplexy MeSH
- genetická variace * MeSH
- genetické matrice * MeSH
- reprodukovatelnost výsledků MeSH
- RNA genetika MeSH
- Saccharomycetales genetika MeSH
- sekvence nukleotidů MeSH
- telomerasa genetika MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzothiazoly MeSH
- RNA MeSH
- telomerasa MeSH
- telomerase RNA MeSH Prohlížeč
- thioflavin T MeSH Prohlížeč
Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.
- Klíčová slova
- BRACO19, Bcl2, G-quadruplex, KRAS, NMM, PhenDC3, drug, in-cell NMR, ligand, telomeric DNA,
- MeSH
- DNA chemie účinky léků MeSH
- G-kvadruplexy účinky léků MeSH
- konformace nukleové kyseliny účinky léků MeSH
- léčivé přípravky chemie MeSH
- lidé MeSH
- ligandy MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární modely MeSH
- protony MeSH
- vazebná místa účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- léčivé přípravky MeSH
- ligandy MeSH
- protony MeSH
We recently showed that Saccharomyces cerevisiae telomeric DNA can fold into an unprecedented pseudocircular G-hairpin (PGH) structure. However, the formation of PGHs in the context of extended sequences, which is a prerequisite for their function in vivo and their applications in biotechnology, has not been elucidated. Here, we show that despite its 'circular' nature, PGHs tolerate single-stranded (ss) protrusions. High-resolution NMR structure of a novel member of PGH family reveals the atomistic details on a junction between ssDNA and PGH unit. Identification of new sequences capable of folding into one of the two forms of PGH helped in defining minimal sequence requirements for their formation. Our time-resolved NMR data indicate a possibility that PGHs fold via a complex kinetic partitioning mechanism and suggests the existence of K+ ion-dependent PGH folding intermediates. The data not only provide an explanation of cation-type-dependent formation of PGHs, but also explain the unusually large hysteresis between PGH melting and annealing noted in our previous study. Our findings have important implications for DNA biology and nanotechnology. Overrepresentation of sequences able to form PGHs in the evolutionary-conserved regions of the human genome implies their functionally important biological role(s).
- MeSH
- konformace nukleové kyseliny MeSH
- kruhová DNA chemie MeSH
- molekulární modely MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- nukleotidové motivy MeSH
- párování bází MeSH
- Saccharomyces cerevisiae genetika MeSH
- stereoizomerie MeSH
- telomery chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kruhová DNA MeSH
BACKGROUND: Many studies have shown that guanine-rich DNA sequences form quadruplex structures (G4) in vitro but there is scarce evidence of guanine quadruplexes in vivo. The majority of potential quadruplex-forming sequences (PQS) are located in transposable elements (TEs), especially close to promoters within long terminal repeats of plant LTR retrotransposons. RESULTS: In order to test the potential effect of G4s on retrotransposon expression, we cloned the long terminal repeats of selected maize LTR retrotransposons upstream of the lacZ reporter gene and measured its transcription and translation in yeast. We found that G4s had an inhibitory effect on translation in vivo since "mutants" (where guanines were replaced by adenines in PQS) showed higher expression levels than wild-types. In parallel, we confirmed by circular dichroism measurements that the selected sequences can indeed adopt G4 conformation in vitro. Analysis of RNA-Seq of polyA RNA in maize seedlings grown in the presence of a G4-stabilizing ligand (NMM) showed both inhibitory as well as stimulatory effects on the transcription of LTR retrotransposons. CONCLUSIONS: Our results demonstrate that quadruplex DNA located within long terminal repeats of LTR retrotransposons can be formed in vivo and that it plays a regulatory role in the LTR retrotransposon life-cycle, thus also affecting genome dynamics.
- Klíčová slova
- Circular dichroism, G4 motifs, Maize LTR retrotransposons, NMM ligand, Quadruplex DNA, Transposable elements,
- MeSH
- G-kvadruplexy * MeSH
- genetická transkripce MeSH
- genom rostlinný * MeSH
- koncové repetice * MeSH
- kukuřice setá genetika růst a vývoj metabolismus MeSH
- reportérové geny * MeSH
- retroelementy * MeSH
- Saccharomyces cerevisiae genetika růst a vývoj MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- retroelementy * MeSH
G-quadruplexes can multimerize under certain conditions, but the sequence requirements of such structures are not well understood. In this study, we investigated the ability of all possible variants of the central tetrad in a monomeric, parallel-strand G-quadruplex to form higher-order structures. Although most of these 256 variants existed primarily as monomers under the conditions of our screen, ∼10% formed dimers or tetramers. These structures could form in a wide range of monovalent and divalent metal ions, and folding was highly cooperative in both KCl and MgCl2. As was previously shown for G-quadruplexes that bind GTP and promote peroxidase reactions, G-quadruplexes that form dimers and tetramers have distinct sequence requirements. Some mutants could also form heteromultimers, and a second screen was performed to characterize the sequence requirements of these structures. Taken together, these experiments provide new insights into the sequence requirements and structures of both homomultimeric and heteromultimeric G-quadruplexes.
Ionizing radiation produces clustered damage to DNA which is difficult to repair and thus more harmful than single lesions. Clustered lesions have only been investigated in dsDNA models. Introducing the term 'clustered damage to G-quadruplexes' we report here on the structural effects of multiple tetrahydrofuranyl abasic sites replacing loop adenines (A/AP) and tetrad guanines (G/AP) in quadruplexes formed by the human telomere d[AG3(TTAG3)3] (htel-22) and d[TAG3(TTAG3)3TT] (htel-25) in K+ solutions. Single to triple A/APs increased the population of parallel strands in their structures by stabilizing propeller type loops, shifting the antiparallel htel-22 into hybrid or parallel quadruplexes. In htel-25, the G/APs inhibited the formation of parallel strands and these adopted antiparallel topologies. Clustered G/AP and A/APs reduced the thermal stability of the wild-type htel-25. Depending on position, A/APs diminished or intensified the damaging effect of the G/APs. Taken together, clustered lesions can disrupt the topology and stability of the htel quadruplexes and restrict their conformational space. These in vitro results suggest that formation of clustered lesions in the chromosome capping structure can result in the unfolding of existing G-quadruplexes which can lead to telomere shortening.
- MeSH
- adenin chemie MeSH
- cirkulární dichroismus MeSH
- DNA chemie genetika MeSH
- furany chemie MeSH
- G-kvadruplexy * MeSH
- lidé MeSH
- molekulární modely MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- oligonukleotidy chemie MeSH
- roztoky MeSH
- telomery genetika ultrastruktura MeSH
- zkracování telomer * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenin MeSH
- DNA MeSH
- furany MeSH
- oligonukleotidy MeSH
- roztoky MeSH
A fundamental motif in canonical nucleic acid structure is the base pair. Mutations that disrupt base pairs are typically destabilizing, but stability can often be restored by a second mutation that replaces the original base pair with an isosteric variant. Such concerted changes are a way to identify helical regions in secondary structures and to identify new functional motifs in sequenced genomes. In principle, such analysis can be extended to non-canonical nucleic acid structures, but this approach has not been utilized because the sequence requirements of such structures are not well understood. Here we investigate the sequence requirements of a G-quadruplex that can both bind GTP and promote peroxidase reactions. Characterization of all 256 variants of the central tetrad in this structure indicates that certain mutations can compensate for canonical G-G-G-G tetrads in the context of both GTP-binding and peroxidase activity. Furthermore, the sequence requirements of these two motifs are significantly different, indicating that tetrad sequence plays a role in determining the biochemical specificity of G-quadruplex activity. Our results provide insight into the sequence requirements of G-quadruplexes, and should facilitate the analysis of such motifs in sequenced genomes.
- MeSH
- cirkulární dichroismus MeSH
- G-kvadruplexy * MeSH
- genom lidský MeSH
- guanosintrifosfát chemie MeSH
- lidé MeSH
- mutace MeSH
- oligonukleotidy chemie MeSH
- sekvence nukleotidů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- guanosintrifosfát MeSH
- oligonukleotidy MeSH
Guanine-rich oligonucleotides can form a unique G-quadruplex (GQ) structure with stacking units of four guanine bases organized in a plane through Hoogsteen bonding. GQ structures have been detected in vivo and shown to exert their roles in maintaining genome integrity and regulating gene expression. Understanding GQ conformation is important for understanding its inherent biological role and for devising strategies to control and manipulate functions based on targeting GQ. Although a number of biophysical methods have been used to investigate structure and dynamics of GQs, our understanding is far from complete. As such, this work explores the use of the site-directed spin labeling technique, complemented by molecular dynamics simulations, for investigating GQ conformations. A nucleotide-independent nitroxide label (R5), which has been previously applied for probing conformations of noncoding RNA and DNA duplexes, is attached to multiple sites in a 22-nucleotide DNA strand derived from the human telomeric sequence (hTel-22) that is known to form GQ. The R5 labels are shown to minimally impact GQ folding, and inter-R5 distances measured using double electron-electron resonance spectroscopy are shown to adequately distinguish the different topological conformations of hTel-22 and report variations in their occupancies in response to changes of the environment variables such as salt, crowding agent, and small molecule ligand. The work demonstrates that the R5 label is able to probe GQ conformation and establishes the base for using R5 to study more complex sequences, such as those that may potentially form multimeric GQs in long telomeric repeats.
- MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- lidé MeSH
- oligonukleotidy chemie MeSH
- oxid dusný chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- oligonukleotidy MeSH
- oxid dusný MeSH
DNA G-hairpins are potential key structures participating in folding of human telomeric guanine quadruplexes (GQ). We examined their properties by standard MD simulations starting from the folded state and long T-REMD starting from the unfolded state, accumulating ∼130 μs of atomistic simulations. Antiparallel G-hairpins should spontaneously form in all stages of the folding to support lateral and diagonal loops, with sub-μs scale rearrangements between them. We found no clear predisposition for direct folding into specific GQ topologies with specific syn/anti patterns. Our key prediction stemming from the T-REMD is that an ideal unfolded ensemble of the full GQ sequence populates all 4096 syn/anti combinations of its four G-stretches. The simulations can propose idealized folding pathways but we explain that such few-state pathways may be misleading. In the context of the available experimental data, the simulations strongly suggest that the GQ folding could be best understood by the kinetic partitioning mechanism with a set of deep competing minima on the folding landscape, with only a small fraction of molecules directly folding to the native fold. The landscape should further include non-specific collapse processes where the molecules move via diffusion and consecutive random rare transitions, which could, e.g. structure the propeller loops.