Nejvíce citovaný článek - PubMed ID 22701720
Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
- MeSH
- játra * metabolismus účinky léků patologie MeSH
- lidé MeSH
- metabolismus lipidů účinky léků MeSH
- nealkoholová steatóza jater metabolismus farmakoterapie dietoterapie patologie MeSH
- obezita metabolismus farmakoterapie dietoterapie patologie MeSH
- omega-3 mastné kyseliny * aplikace a dávkování metabolismus terapeutické užití MeSH
- potravní doplňky * MeSH
- ztučnělá játra metabolismus farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- omega-3 mastné kyseliny * MeSH
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is associated with abnormalities of liver lipid metabolism. On the contrary, a diet enriched with n-3 polyunsaturated fatty acids (n-3-PUFAs) has been reported to ameliorate the progression of NAFLD. The aim of our study was to investigate the impact of dietary n-3-PUFA enrichment on the development of NAFLD and liver lipidome. Mice were fed for 6 weeks either a high-fat methionine choline-deficient diet (MCD) or standard chow with or without n-3-PUFAs. Liver histology, serum biochemistry, detailed plasma and liver lipidomic analyses, and genome-wide transcriptome analysis were performed. Mice fed an MCD developed histopathological changes characteristic of NAFLD, and these changes were ameliorated with n-3-PUFAs. Simultaneously, n-3-PUFAs decreased serum triacylglycerol and cholesterol concentrations as well as ALT and AST activities. N-3-PUFAs decreased serum concentrations of saturated and monounsaturated free fatty acids (FAs), while increasing serum concentrations of long-chain PUFAs. Furthermore, in the liver, the MCD significantly increased the hepatic triacylglycerol content, while the administration of n-3-PUFAs eliminated this effect. Administration of n-3-PUFAs led to significant beneficial differences in gene expression within biosynthetic pathways of cholesterol, FAs, and pro-inflammatory cytokines (IL-1 and TNF-α). To conclude, n-3-PUFA supplementation appears to represent a promising nutraceutical approach for the restoration of abnormalities in liver lipid metabolism and the prevention and treatment of NAFLD.
- Klíčová slova
- lipidome, lipids, n-3 fatty acids, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis,
- MeSH
- cholesterol metabolismus MeSH
- cholin metabolismus MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- játra metabolismus MeSH
- kyseliny mastné neesterifikované metabolismus MeSH
- methionin metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater * etiologie genetika MeSH
- nenasycené mastné kyseliny metabolismus MeSH
- omega-3 mastné kyseliny * farmakologie terapeutické užití metabolismus MeSH
- Racemethionin metabolismus farmakologie MeSH
- triglyceridy metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol MeSH
- cholin MeSH
- kyseliny mastné neesterifikované MeSH
- methionin MeSH
- nenasycené mastné kyseliny MeSH
- omega-3 mastné kyseliny * MeSH
- Racemethionin MeSH
- triglyceridy MeSH
Preclinical evidence suggests that n-3 fatty acids EPA and DHA (Omega-3) supplemented as phospholipids (PLs) may be more effective than triacylglycerols (TAGs) in reducing hepatic steatosis. To further test the ability of Omega-3 PLs to alleviate liver steatosis, we used a model of exacerbated non-alcoholic fatty liver disease based on high-fat feeding at thermoneutral temperature. Male C57BL/6N mice were fed for 24 weeks a lard-based diet given either alone (LHF) or supplemented with Omega-3 (30 mg/g diet) as PLs (krill oil; ω3PL) or TAGs (Epax 3000TG concentrate; ω3TG), which had a similar total content of EPA and DHA and their ratio. Substantial levels of TAG accumulation (~250 mg/g) but relatively low inflammation/fibrosis levels were achieved in the livers of control LHF mice. Liver steatosis was reduced by >40% in the ω3PL but not ω3TG group, and plasma ALT levels were markedly reduced (by 68%) in ω3PL mice as well. Krill oil administration also improved hepatic insulin sensitivity, and its effects were associated with high plasma adiponectin levels (150% of LHF mice) along with superior bioavailability of EPA, increased content of alkaloids stachydrine and trigonelline, suppression of lipogenic gene expression, and decreased diacylglycerol levels in the liver. This study reveals that in addition to Omega-3 PLs, other constituents of krill oil, such as alkaloids, may contribute to its strong antisteatotic effects in the liver.
- Klíčová slova
- C57BL/6N mice, NAFLD, high-fat diet, krill oil, obesity, omega-3, phospholipids, thermoneutral temperature,
- MeSH
- bydlení zvířat MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- Euphausiacea MeSH
- fosfolipidy farmakologie MeSH
- fyziologie výživy zvířat MeSH
- inzulinová rezistence MeSH
- játra metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater etiologie terapie MeSH
- obezita etiologie terapie MeSH
- potravní doplňky * MeSH
- rybí oleje farmakologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfolipidy MeSH
- rybí oleje MeSH
Fillets from marine fish species contain n-3 polyunsaturated fatty acids (PUFAs) in the form of phospholipids (PLs). To investigate the importance of PL-bound n-3 PUFAs in mediating the anti-obesogenic effect of lean seafood, we compared the anti-obesogenic properties of fillets from cod with fillets from pangasius, a fresh water fish with a very low content of PL-bound n-3 PUFAs. We prepared high-fat/high-protein diets using chicken, cod and pangasius as the protein sources, and fed male C57BL/6J mice these diets for 12 weeks. Mice fed the diet containing cod gained less adipose tissue mass and had smaller white adipocytes than mice fed the chicken-containing diet, whereas mice fed the pangasius-containing diet were in between mice fed the chicken-containing diet and mice fed the cod-containing diet. Of note, mice fed the pangasius-containing diet exhibited reduced glucose tolerance compared to mice fed the cod-containing diet. Although the sum of marine n-3 PUFAs comprised less than 2% of the total fatty acids in the cod-containing diet, this was sufficient to significantly increase the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA) in mouse tissues and enhance production of n-3 PUFA-derived lipid mediators as compared with mice fed pangasius or chicken.
- Klíčová slova
- DHA, EPA, endocannabinoids, marine protein source, n-3 PUFA, nutrition, obesity and mice, phospholipids, seafood,
- MeSH
- dieta s vysokým obsahem proteinů metody MeSH
- dieta s vysokým obsahem tuků metody MeSH
- drůbeží výrobky MeSH
- Gadus morhua * MeSH
- kyselina eikosapentaenová metabolismus MeSH
- kyseliny dokosahexaenové metabolismus MeSH
- látky proti obezitě analýza MeSH
- mastné kyseliny analýza MeSH
- metabolismus lipidů MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- omega-3 mastné kyseliny analýza MeSH
- potrava z moře (živočišná) analýza MeSH
- sumci * MeSH
- tuková tkáň metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina eikosapentaenová MeSH
- kyseliny dokosahexaenové MeSH
- látky proti obezitě MeSH
- mastné kyseliny MeSH
- omega-3 mastné kyseliny MeSH
Antisteatotic effects of omega-3 fatty acids (Omega-3) in obese rodents seem to vary depending on the lipid form of their administration. Whether these effects could reflect changes in intestinal metabolism is unknown. Here, we compare Omega-3-containing phospholipids (krill oil; ω3PL-H) and triacylglycerols (ω3TG) in terms of their effects on morphology, gene expression and fatty acid (FA) oxidation in the small intestine. Male C57BL/6N mice were fed for 8 weeks with a high-fat diet (HFD) alone or supplemented with 30 mg/g diet of ω3TG or ω3PL-H. Omega-3 index, reflecting the bioavailability of Omega-3, reached 12.5% and 7.5% in the ω3PL-H and ω3TG groups, respectively. Compared to HFD mice, ω3PL-H but not ω3TG animals had lower body weight gain (-40%), mesenteric adipose tissue (-43%), and hepatic lipid content (-64%). The highest number and expression level of regulated intestinal genes was observed in ω3PL-H mice. The expression of FA ω-oxidation genes was enhanced in both Omega-3-supplemented groups, but gene expression within the FA β-oxidation pathway and functional palmitate oxidation in the proximal ileum was significantly increased only in ω3PL-H mice. In conclusion, enhanced intestinal FA oxidation could contribute to the strong antisteatotic effects of Omega-3 when administered as phospholipids to dietary obese mice.
- Klíčová slova
- Omega-3 index, Omega-3 phospholipids, high-fat diet, krill oil, small intestine,
- MeSH
- dieta s vysokým obsahem tuků * MeSH
- erytrocytární membrána metabolismus MeSH
- Euphausiacea MeSH
- fosfolipidy aplikace a dávkování MeSH
- krevní glukóza analýza MeSH
- mastné kyseliny metabolismus MeSH
- metabolismus lipidů účinky léků MeSH
- myši obézní MeSH
- oleje MeSH
- omega-3 mastné kyseliny aplikace a dávkování MeSH
- oxidace-redukce MeSH
- střeva anatomie a histologie MeSH
- střevní sliznice metabolismus MeSH
- tělesná hmotnost MeSH
- triglyceridy aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfolipidy MeSH
- krevní glukóza MeSH
- mastné kyseliny MeSH
- oleje MeSH
- omega-3 mastné kyseliny MeSH
- triglyceridy MeSH
We found previously that white adipose tissue (WAT) hyperplasia in obese mice was limited by dietary omega-3 polyunsaturated fatty acids (omega-3 PUFA). Here we aimed to characterize the underlying mechanism. C57BL/6N mice were fed a high-fat diet supplemented or not with omega-3 PUFA for one week or eight weeks; mice fed a standard chow diet were also used. In epididymal WAT (eWAT), DNA content was quantified, immunohistochemical analysis was used to reveal the size of adipocytes and macrophage content, and lipidomic analysis and a gene expression screen were performed to assess inflammatory status. The stromal-vascular fraction of eWAT, which contained most of the eWAT cells, except for adipocytes, was characterized using flow cytometry. Omega-3 PUFA supplementation limited the high-fat diet-induced increase in eWAT weight, cell number (DNA content), inflammation, and adipocyte growth. eWAT hyperplasia was compromised due to the limited increase in the number of preadipocytes and a decrease in the number of endothelial cells. The number of leukocytes and macrophages was unaffected, but a shift in macrophage polarization towards a less inflammatory phenotype was observed. Our results document that the counteraction of eWAT hyperplasia by omega-3 PUFA in dietary-obese mice reflects an effect on the number of adipose lineage and endothelial cells.
- Klíčová slova
- adipocyte, cellularity, fat, nutrition, obesity, proliferation, white adipose tissue,
- MeSH
- bílá tuková tkáň účinky léků MeSH
- dieta s vysokým obsahem tuků MeSH
- endoteliální buňky účinky léků MeSH
- makrofágy účinky léků patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- omega-3 mastné kyseliny aplikace a dávkování MeSH
- proliferace buněk účinky léků MeSH
- tukové buňky cytologie účinky léků MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- omega-3 mastné kyseliny MeSH
Obesity is associated with insulin resistance and impaired glucose tolerance, which represent characteristic features of the metabolic syndrome. Development of obesity is also linked to changes in fatty acid and amino acid metabolism observed in animal models of obesity as well as in humans. The aim of this study was to explore whether plasma metabolome, namely the levels of various acylcarnitines and amino acids, could serve as a biomarker of propensity to obesity and impaired glucose metabolism. Taking advantage of a high phenotypic variation in diet-induced obesity in C57BL/6J mice, 12-week-old male and female mice (n = 155) were fed a high-fat diet (lipids ~32 wt%) for a period of 10 weeks, while body weight gain (BWG) and changes in insulin sensitivity (ΔHOMA-IR) were assessed. Plasma samples were collected before (week 4) and after (week 22) high-fat feeding. Both univariate and multivariate statistical analyses were then used to examine the relationships between plasma metabolome and selected phenotypes including BWG and ΔHOMA-IR. Partial least squares-discrimination analysis was able to distinguish between animals selected either for their low or high BWG (or ΔHOMA-IR) in male but not female mice. Among the metabolites that differentiated male mice with low and high BWG, and which also belonged to the major discriminating metabolites when analyzed in plasma collected before and after high-fat feeding, were amino acids Tyr and Orn, as well as acylcarnitines C16-DC and C18:1-OH. In general, the separation of groups selected for their low or high ΔHOMA-IR was less evident and the outcomes of a corresponding multivariate analysis were much weaker than in case of BWG. Thus, our results document that plasma acylcarnitines and amino acids could serve as a gender-specific complex biomarker of propensity to obesity, however with a limited predictive value in case of the associated impairment of insulin sensitivity.
- MeSH
- aminokyseliny krev MeSH
- analýza rozptylu MeSH
- biologické markery MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- fenotyp MeSH
- glukózový toleranční test MeSH
- inzulinová rezistence MeSH
- karnitin analogy a deriváty krev MeSH
- krevní glukóza MeSH
- metabolom MeSH
- metabolomika metody MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- obezita krev diagnóza etiologie MeSH
- porucha glukózové tolerance MeSH
- prognóza MeSH
- shluková analýza MeSH
- tendenční skóre MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acylcarnitine MeSH Prohlížeč
- aminokyseliny MeSH
- biologické markery MeSH
- karnitin MeSH
- krevní glukóza MeSH
OBJECTIVE: Resolution of low-grade inflammation of white adipose tissue (WAT) is one of the keys for amelioration of obesity-associated metabolic dysfunctions. We focused on the identification of adipokines, which could be involved at the early stages of resolution of WAT inflammation. METHODS AND PROCEDURE: Male C57BL/6J mice with obesity induced in response to a 22-week feeding corn oil-based high-fat (cHF) diet were divided into four groups and were fed with, for 2 weeks, control cHF diet or cHF-based diets supplemented with: (i) concentrate of n-3 long-chain polyunsaturated fatty acids, mainly eicosapentaenoic and docosahexaenoic acids (cHF+F); (ii) thiazolidinedione drug rosiglitazone (cHF+TZD); and (iii) both compounds (cHF+F+TZD). RESULTS: The short-term combined intervention exerted additive effect in the amelioration of WAT inflammation in obese mice, namely in the epididymal fat, even in the absence of any changes in either adipocyte volume or fat mass. The combined intervention elicited hypolipidaemic effect and induced adiponectin, whereas the responses to single interventions (cHF+F, cHF+TZD) were less pronounced. In addition, analysis in WAT lysates using protein arrays revealed that the levels of a small set of adipose tissue-related proteins, namely macrophage inflammatory protein 1γ, endoglin, vascular cell adhesion molecule 1 and interleukin 1 receptor antagonist, changed in response to the anti-inflammatory interventions and were strongly reduced in the cHF+F+TZD mice. These results were verified using both the analysis of gene expression and enzyme-linked immunosorbent analysis in WAT lysates. In contrast with adiponectin, which showed changing plasma levels in response to dietary interventions, the levels of the above proteins were affected only in WAT. CONCLUSIONS: We identified several adipose tissue-related proteins, which are locally involved in resolution of low-grade inflammation and remodelling of WAT.
- MeSH
- adipokiny metabolismus MeSH
- bílá tuková tkáň metabolismus patologie MeSH
- dieta s vysokým obsahem tuků MeSH
- dietní tuky MeSH
- ELISA MeSH
- energetický metabolismus MeSH
- imunohistochemie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- kyseliny dokosahexaenové farmakologie MeSH
- myši inbrední C57BL MeSH
- myši obézní MeSH
- myši MeSH
- obezita imunologie patologie MeSH
- omega-3 mastné kyseliny farmakologie MeSH
- rosiglitazon MeSH
- thiazolidindiony farmakologie MeSH
- tukové buňky metabolismus MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adipokiny MeSH
- dietní tuky MeSH
- kyseliny dokosahexaenové MeSH
- omega-3 mastné kyseliny MeSH
- rosiglitazon MeSH
- thiazolidindiony MeSH