Most cited article - PubMed ID 22943470
Naturalization of introduced plants: ecological drivers of biogeographical patterns
Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.
- MeSH
- Biodiversity MeSH
- Genome Size MeSH
- Ecology MeSH
- Ecosystem * MeSH
- Humans MeSH
- Plants genetics MeSH
- Citizenship * MeSH
- Introduced Species MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Soil seed viability and germinability dynamics can have a major influence on the establishment and spread of plants introduced beyond their native distribution range. Yet, we lack information on how temporal variability in these traits could affect the invasion process. To address this issue, we conducted an 8-year seed burial experiment examining seed viability and germinability dynamics for 21 invasive and 38 naturalized herbs in the Czech Republic. Seeds of most naturalized and invasive species persisted in the soil for several years. However, naturalized herbs exhibited greater seed longevity, on average, than invasive ones. Phylogenetic logistic models showed that seed viability (but not germinability) dynamics were significantly related to the invasion status of the study species. Seed viability declined earlier and more sharply in invasive species, and the probability of finding viable seeds of invasive species by the end of the experiment was low. Our findings suggest that invasive herbs might take advantage of high seed viability in the years immediately after dispersal, while naturalized species benefit from extended seed viability over time. These differences, however, are not sufficiently strong to explain the invasiveness of the species examined.
- MeSH
- Phylogeny MeSH
- Soil MeSH
- Seeds MeSH
- Seed Bank * MeSH
- Introduced Species * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Soil MeSH
Regional species assemblages have been shaped by colonization, speciation and extinction over millions of years. Humans have altered biogeography by introducing species to new ranges. However, an analysis of how strongly naturalized plant species (i.e. alien plants that have established self-sustaining populations) affect the taxonomic and phylogenetic uniqueness of regional floras globally is still missing. Here, we present such an analysis with data from native and naturalized alien floras in 658 regions around the world. We find strong taxonomic and phylogenetic floristic homogenization overall, and that the natural decline in floristic similarity with increasing geographic distance is weakened by naturalized species. Floristic homogenization increases with climatic similarity, which emphasizes the importance of climate matching in plant naturalization. Moreover, floristic homogenization is greater between regions with current or past administrative relationships, indicating that being part of the same country as well as historical colonial ties facilitate floristic exchange, most likely due to more intensive trade and transport between such regions. Our findings show that naturalization of alien plants threatens taxonomic and phylogenetic uniqueness of regional floras globally. Unless more effective biosecurity measures are implemented, it is likely that with ongoing globalization, even the most distant regions will lose their floristic uniqueness.
With globalisation facilitating the movement of plants and seeds beyond the native range, preventing potentially harmful introductions requires knowledge of what drives the successful establishment and spread of alien plants. Here, we examined global-scale relationships between naturalisation success (incidence and extent) and invasiveness, soil seed bank properties (type and densities) and key species traits (seed mass, seed dormancy and life form) for 2350 species of angiosperms. Naturalisation and invasiveness were strongly associated with the ability to form persistent (vs. transient) seed banks but relatively weakly with seed bank densities and other traits. Our findings suggest that seed bank persistence is a trait that better captures the ability to become naturalised and invasive compared to seed traits more widely available in trait databases. Knowledge of seed persistence can contribute to our ability to predict global naturalisation and invasiveness and to identify potentially invasive flowering plants before they are introduced.
- Keywords
- GloNAF, GloSSBank, alien species, angiosperm, dormancy, exotic species, persistence, plant invasions, seed mass,
- MeSH
- Magnoliopsida * MeSH
- Soil MeSH
- Seeds MeSH
- Seed Bank * MeSH
- Plant Dormancy MeSH
- Publication type
- Letter MeSH
- Names of Substances
- Soil MeSH
Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges.
Biological invasions are a defining feature of the Anthropocene, but the factors that determine the spatially uneven distribution of alien plant species are still poorly understood. Here, we present the first global analysis of the effects of biogeographic factors, the physical environment and socio-economy on the richness of naturalized and invasive alien plants. We used generalized linear mixed-effects models and variation partitioning to disentangle the relative importance of individual factors, and, more broadly, of biogeography, physical environment and socio-economy. As measures of the magnitude of permanent anthropogenic additions to the regional species pool and of species with negative environmental impacts, we calculated the relative richness of naturalized (= RRN) and invasive (= RRI) alien plant species numbers adjusted for the number of native species in 838 terrestrial regions. Socio-economic factors (per-capita gross domestic product (GDP), population density, proportion of agricultural land) were more important in explaining RRI (~50 % of the explained variation) than RRN (~40 %). Warm-temperate and (sub)tropical regions have higher RRN than tropical or cooler regions. We found that socio-economic pressures are more relevant for invasive than for naturalized species richness. The expectation that the southern hemisphere is more invaded than the northern hemisphere was confirmed only for RRN on islands, but not for mainland regions nor for RRI. On average, islands have ~6-fold RRN, and >3-fold RRI compared to mainland regions. Eighty-two islands (=26 % of all islands) harbour more naturalized alien than native plants. Our findings challenge the widely held expectation that socio-economic pressures are more relevant for plant naturalization than for invasive plants. To meet international biodiversity targets and halt the detrimental consequences of plant invasions, it is essential to disrupt the connection between socio-economic development and plant invasions by improving pathway management, early detection and rapid response.
- Keywords
- Alien species richness, biogeography, invasion stages, islands, pressures, vascular plants,
- Publication type
- Journal Article MeSH
BACKGROUND AND AIMS: Fruit heteromorphism is considered to be a bet-hedging strategy to cope with spatially or temporally heterogeneous environments. The different behaviours of the fruit morphs of the same species might also be beneficial during naturalization, once the species has been introduced to a new range. Yet, no study to date has tested the association between fruit heteromorphism and global-scale naturalization success for a large set of plant species. METHODS: We compiled two large datasets on fruit heteromorphism in Asteraceae. One dataset was on native species in Central Europe (n = 321) and the other was on species frequently planted as ornamentals (n = 584). Using phylogenetic linear and logistic regressions, we tested whether heteromorphic species are more likely to naturalize outside their native range, and in more regions of the world than monomorphic species. We also tested whether the effect of heteromorphism is modulated by life history and height of the species. KEY RESULTS: We show that heteromorphic species were more likely to naturalize outside their native range. However, among the naturalized species, heteromorphic and monomorphic species did not differ in the number of world regions where they became naturalized. A short life span and tall stature both promoted naturalization success and, when life history and height were included in the models, the effect of fruit heteromorphism on the ability to naturalize became non-significant. Nevertheless, among tall plants, heteromorphic ornamental species were significantly more likely to become naturalized in general and in more regions than monomorphic species. CONCLUSIONS: Our results provide evidence that in Asteraceae the production of heteromorphic fruits is associated with naturalization success. It appears, however, that not fruit heteromorphism per se, but a successful combination of other biological traits in fruit heteromorphic species, namely short life span and tall stature, contributes to their naturalization success.
- Keywords
- Alien species, Asteraceae, Compositae, dispersal, fruit heteromorphism, heterocarpy, invasiveness, monocarpy, naturalization, non-native species, seed heteromorphism,
- MeSH
- Asteraceae * MeSH
- Ecosystem MeSH
- Phylogeny MeSH
- Fruit * MeSH
- Introduced Species MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
The search for traits associated with plant invasiveness has yielded contradictory results, in part because most previous studies have failed to recognize that different traits are important at different stages along the introduction-naturalization-invasion continuum. Here we show that across six different habitat types in temperate Central Europe, naturalized non-invasive species are functionally similar to native species occurring in the same habitat type, but invasive species are different as they occupy the edge of the plant functional trait space represented in each habitat. This pattern was driven mainly by the greater average height of invasive species. These results suggest that the primary determinant of successful establishment of alien species in resident plant communities is environmental filtering, which is expressed in similar trait distributions. However, to become invasive, established alien species need to be different enough to occupy novel niche space, i.e. the edge of trait space.
- MeSH
- Species Specificity MeSH
- Ecology MeSH
- Ecosystem * MeSH
- Phenotype MeSH
- Phylogeny MeSH
- Plant Physiological Phenomena * MeSH
- Plants classification MeSH
- Plant Development MeSH
- Introduced Species * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Many plant species have established self-sustaining populations outside their natural range because of human activities. Plants with selfing ability should be more likely to establish outside their historical range because they can reproduce from a single individual when mates or pollinators are not available. Here, we compile a global breeding-system database of 1,752 angiosperm species and use phylogenetic generalized linear models and path analyses to test relationships between selfing ability, life history, native range size and global naturalization status. Selfing ability is associated with annual or biennial life history and a large native range, which both positively correlate with the probability of naturalization. Path analysis suggests that a high selfing ability directly increases the number of regions where a species is naturalized. Our results provide robust evidence across flowering plants at the global scale that high selfing ability fosters alien plant naturalization both directly and indirectly.
- MeSH
- Breeding MeSH
- Ecosystem MeSH
- Phylogeny MeSH
- Flowers MeSH
- Linear Models MeSH
- Magnoliopsida physiology MeSH
- Pollination physiology MeSH
- Regression Analysis MeSH
- Genes, Plant * MeSH
- Seeds MeSH
- Plant Development MeSH
- Introduced Species * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH