Most cited article - PubMed ID 23560737
The nuclear mRNA export receptor Mex67-Mtr2 of Trypanosoma brucei contains a unique and essential zinc finger motif
The exon junction complex (EJC) is a key player in metazoan mRNA quality control and is placed upstream of the exon-exon junction after splicing. Its inner core is composed of Magoh, Y14, eIF4AIII and BTZ and the outer core of proteins involved in mRNA splicing (CWC22), export (Yra1), translation (PYM) and nonsense mediated decay (NMD, UPF1/2/3). Trypanosoma brucei encodes only two genes with introns, but all mRNAs are processed by trans-splicing. The presence of three core EJC proteins and a potential BTZ homologue (Rbp25) in trypanosomes has been suggested to adapt of the EJC function to mark trans-spliced mRNAs. We analysed trypanosome EJC components and noticed major differences between eIF4AIII and Magoh/Y14: (i) whilst eIF4AIII is essential, knocking out both Magoh and Y14 elicits only a mild growth phenotype (ii) eIF4AIII localization is mostly nucleolar, while Magoh and Y14 are nucleolar and nucleoplasmic but excluded from the cytoplasm (iii) eIF4AIII associates with nucleolar proteins and the splicing factor CWC22, but not with Y14 or Magoh, while Magoh and Y14 associate with each other, but not with eIF4AIII, CWC22 or nucleolar proteins. Our data argue against the presence of a functional EJC in trypanosomes, but indicate that eIF4AIII adopted non-EJC related, essential functions, while Magoh and Y14 became redundant. Trypanosomes also possess homologues to the NMD proteins UPF1 and UPF2. Depletion of UPF1 causes only a minor reduction in growth and phylogenetic analyses show several independent losses of UPF1 and UPF2, as well as complete loss of UPF3 in the Kinetoplastida group, indicating that UPF1-dependent NMD is not essential. Regardless, we demonstrate that UPF1 depletion restores the mRNA levels of a PTC reporter. Altogether, we show that the almost intron-less trypanosomes are in the process of losing the canonical EJC/NMD pathways: Y14 and Magoh have become redundant and the still-functional UPF1-dependent NMD pathway is not essential.
- MeSH
- Eukaryotic Initiation Factor-4A metabolism genetics MeSH
- Exons genetics MeSH
- RNA, Messenger genetics metabolism MeSH
- Nonsense Mediated mRNA Decay * MeSH
- Protozoan Proteins * metabolism genetics MeSH
- RNA Helicases * metabolism genetics MeSH
- RNA Splicing MeSH
- Trypanosoma brucei brucei * genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Eukaryotic Initiation Factor-4A MeSH
- RNA, Messenger MeSH
- Protozoan Proteins * MeSH
- RNA Helicases * MeSH
Nuclear export of mRNAs requires loading the mRNP to the transporter Mex67/Mtr2 in the nucleoplasm, controlled access to the pore by the basket-localised TREX-2 complex and mRNA release at the cytoplasmic site by the DEAD-box RNA helicase Dbp5. Asymmetric localisation of nucleoporins (NUPs) and transport components as well as the ATP dependency of Dbp5 ensure unidirectionality of transport. Trypanosomes possess homologues of the mRNA transporter Mex67/Mtr2, but not of TREX-2 or Dbp5. Instead, nuclear export is likely fuelled by the GTP/GDP gradient created by the Ran GTPase. However, it remains unclear, how directionality is achieved since the current model of the trypanosomatid pore is mostly symmetric. We have revisited the architecture of the trypanosome nuclear pore complex using a novel combination of expansion microscopy, proximity labelling and streptavidin imaging. We could confidently assign the NUP76 complex, a known Mex67 interaction platform, to the cytoplasmic site of the pore and the NUP64/NUP98/NUP75 complex to the nuclear site. Having defined markers for both sites of the pore, we set out to map all 75 trypanosome proteins with known nuclear pore localisation to a subregion of the pore using mass spectrometry data from proximity labelling. This approach defined several further proteins with a specific localisation to the nuclear site of the pore, including proteins with predicted structural homology to TREX-2 components. We mapped the components of the Ran-based mRNA export system to the nuclear site (RanBPL), the cytoplasmic site (RanGAP, RanBP1) or both (Ran, MEX67). Lastly, we demonstrate, by deploying an auxin degron system, that NUP76 holds an essential role in mRNA export consistent with a possible functional orthology to NUP82/88. Altogether, the combination of proximity labelling with expansion microscopy revealed an asymmetric architecture of the trypanosome nuclear pore supporting inherent roles for directed transport. Our approach delivered novel nuclear pore associated components inclusive positional information, which can now be interrogated for functional roles to explore trypanosome-specific adaptions of the nuclear basket, export control, and mRNP remodelling.
- MeSH
- Active Transport, Cell Nucleus MeSH
- Cell Nucleus metabolism MeSH
- Nuclear Pore * metabolism ultrastructure MeSH
- Nuclear Pore Complex Proteins metabolism MeSH
- RNA, Messenger * metabolism genetics MeSH
- Nucleocytoplasmic Transport Proteins metabolism MeSH
- RNA-Binding Proteins metabolism MeSH
- Protozoan Proteins metabolism genetics MeSH
- Ribonucleoproteins MeSH
- RNA Transport MeSH
- Trypanosoma brucei brucei * metabolism genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nuclear Pore Complex Proteins MeSH
- messenger ribonucleoprotein MeSH Browser
- RNA, Messenger * MeSH
- Nucleocytoplasmic Transport Proteins MeSH
- RNA-Binding Proteins MeSH
- Protozoan Proteins MeSH
- Ribonucleoproteins MeSH
Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an 'all in one' solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.
- Keywords
- BioID, Trypanosoma brucei, TurboID, cell biology, human, nuclear pore, phase separation, streptavidin imaging,
- MeSH
- Biotinylation MeSH
- Microscopy, Fluorescence methods MeSH
- Humans MeSH
- Antibodies metabolism MeSH
- Protozoan Proteins immunology metabolism MeSH
- Recombinant Fusion Proteins metabolism genetics immunology MeSH
- Streptavidin * chemistry metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antibodies MeSH
- Protozoan Proteins MeSH
- Recombinant Fusion Proteins MeSH
- Streptavidin * MeSH
One of the remarkable features of eukaryotes is the nucleus, delimited by the nuclear envelope (NE), a complex structure and home to the nuclear lamina and nuclear pore complex (NPC). For decades, these structures were believed to be mainly architectural elements and, in the case of the NPC, simply facilitating nucleocytoplasmic trafficking. More recently, the critical roles of the lamina, NPC and other NE constituents in genome organisation, maintaining chromosomal domains and regulating gene expression have been recognised. Importantly, mutations in genes encoding lamina and NPC components lead to pathogenesis in humans, while pathogenic protozoa disrupt the progression of normal development and expression of pathogenesis-related genes. Here, we review features of the lamina and NPC across eukaryotes and discuss how these elements are structured in trypanosomes, protozoa of high medical and veterinary importance, highlighting lineage-specific and conserved aspects of nuclear organisation.
- Keywords
- evolutionary diversity, nuclear lamina, nuclear pore complex, nucleus, trypanosoma,
- MeSH
- Active Transport, Cell Nucleus physiology MeSH
- Nuclear Envelope MeSH
- Nuclear Pore genetics metabolism MeSH
- Nuclear Pore Complex Proteins * metabolism MeSH
- Humans MeSH
- Trypanosoma * genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Nuclear Pore Complex Proteins * MeSH
The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.
- Keywords
- BioID, affinity capture, cryomilling, interactome, proteome,
- MeSH
- Biotinylation MeSH
- Nuclear Pore MeSH
- Proteins * chemistry MeSH
- Proteomics * methods MeSH
- Streptavidin chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Proteins * MeSH
- Streptavidin MeSH
Export of RNA from the nucleus is essential for all eukaryotic cells and has emerged as a major step in the control of gene expression. mRNA molecules are required to complete a complex series of processing events and pass a quality control system to protect the cytoplasm from the translation of aberrant proteins. Many of these events are highly conserved across eukaryotes, reflecting their ancient origin, but significant deviation from a canonical pathway as described from animals and fungi has emerged in the trypanosomatids. With significant implications for the mechanisms that control gene expression and hence differentiation, responses to altered environments and fitness as a parasite, these deviations may also reveal additional, previously unsuspected, mRNA export pathways.
- Keywords
- eukaryogenesis, mRNA export, nuclear pore complex, polycistronic transcription, trans-splicing, trypanosomes,
- MeSH
- Active Transport, Cell Nucleus genetics MeSH
- Cell Nucleus genetics metabolism MeSH
- RNA, Messenger genetics MeSH
- RNA * genetics metabolism MeSH
- Trypanosoma * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- RNA, Messenger MeSH
- RNA * MeSH
In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.
- Keywords
- evolution, gene expression, mRNA export, proteomics, trypanosomes,
- MeSH
- Active Transport, Cell Nucleus MeSH
- Proteomics * MeSH
- RNA MeSH
- RNA Splicing MeSH
- RNA Transport MeSH
- Trypanosoma cruzi * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA MeSH
Kinetoplastids, including Trypanosoma brucei, control gene expression primarily at the posttranscriptional level. Nuclear mRNA export is an important, but understudied, step in this process. The general heterodimeric export factors, Mex67/Mtr2, function in the export of mRNAs and tRNAs in T. brucei, but RNA binding proteins (RBPs) that regulate export processes by controlling the dynamics of Mex67/Mtr2 ribonucleoprotein formation or transport have not been identified. Here, we report that DRBD18, an essential and abundant T. brucei RBP, associates with Mex67/Mtr2 in vivo, likely through its direct interaction with Mtr2. DRBD18 downregulation results in partial accumulation of poly(A)+ mRNA in the nucleus, but has no effect on the localization of intron-containing or mature tRNAs. Comprehensive analysis of transcriptomes from whole-cell and cytosol in DRBD18 knockdown parasites demonstrates that depletion of DRBD18 leads to impairment of nuclear export of a subset of mRNAs. CLIP experiments reveal the association of DRBD18 with several of these mRNAs. Moreover, DRBD18 knockdown leads to a partial accumulation of the Mex67/Mtr2 export receptors in the nucleus. Taken together, the current study supports a model in which DRBD18 regulates the selective nuclear export of mRNAs by promoting the mobilization of export competent mRNPs to the cytosol through the nuclear pore complex.
- Keywords
- FISH, RNA binding protein, RNAseq, mRNA export, nucleoporin, trypanosome,
- MeSH
- Active Transport, Cell Nucleus MeSH
- Gene Knockdown Techniques methods MeSH
- Membrane Transport Proteins metabolism MeSH
- RNA, Messenger metabolism MeSH
- Nucleocytoplasmic Transport Proteins metabolism MeSH
- RNA-Binding Proteins genetics metabolism MeSH
- Protozoan Proteins genetics metabolism MeSH
- Gene Expression Regulation MeSH
- RNA, Transfer metabolism MeSH
- Transcriptome MeSH
- RNA Transport MeSH
- Trypanosoma brucei brucei genetics metabolism MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Membrane Transport Proteins MeSH
- RNA, Messenger MeSH
- Nucleocytoplasmic Transport Proteins MeSH
- RNA-Binding Proteins MeSH
- Protozoan Proteins MeSH
- RNA, Transfer MeSH
Transfer RNAs play a key role in protein synthesis. Following transcription, tRNAs are extensively processed prior to their departure from the nucleus to become fully functional during translation. This includes removal of 5′ leaders and 3′ trailers by a specific endo- and/or exonuclease, 3′ CCA tail addition, posttranscriptional modifications and in some cases intron removal. In this minireview, the critical factors of nuclear tRNA trafficking are described based on studies in classical models such as yeast and human cell lines. In addition, recent findings and identification of novel regulatory loops of nuclear tRNA trafficking in trypanosomes are discussed with emphasis on tRNA modifications. The comparison between the representatives of opisthokonts and excavates serves here to understand the evolutionary conservation and diversity of nuclear tRNA export mechanisms.
- Keywords
- Nuclear tRNA export, Trypanosoma brucei, tRNA modification,
- MeSH
- Cell Line MeSH
- Humans MeSH
- RNA, Nuclear genetics metabolism MeSH
- RNA, Transfer genetics metabolism MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Trypanosoma genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- RNA, Nuclear MeSH
- RNA, Transfer MeSH
The nuclear pore complex (NPC) is responsible for transport between the cytoplasm and nucleoplasm and one of the more intricate structures of eukaryotic cells. Typically composed of over 300 polypeptides, the NPC shares evolutionary origins with endo-membrane and intraflagellar transport system complexes. The modern NPC was fully established by the time of the last eukaryotic common ancestor and, hence, prior to eukaryote diversification. Despite the complexity, the NPC structure is surprisingly flexible with considerable variation between lineages. Here, we review diversification of the NPC in major taxa in view of recent advances in genomic and structural characterisation of plant, protist and nucleomorph NPCs and discuss the implications for NPC evolution. Furthermore, we highlight these changes in the context of mRNA export and consider how this process may have influenced NPC diversity. We reveal the NPC as a platform for continual evolution and adaptation.
- Keywords
- eukaryogenesis, evolutionary biology, nuclear pores, nuclear protein transport,
- MeSH
- Biological Evolution * MeSH
- Biological Transport MeSH
- Nuclear Pore metabolism MeSH
- Membrane Proteins metabolism MeSH
- RNA, Messenger metabolism MeSH
- Mitosis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Membrane Proteins MeSH
- RNA, Messenger MeSH