Most cited article - PubMed ID 24178204
A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L
GBS read coverage analysis identified a Robertsonian chromosome from two Thinopyrum subgenomes in wheat, conferring leaf and stripe rust resistance, drought tolerance, and maintaining yield stability. Agropyron glael (GLAEL), a Thinopyrum intermedium × Th. ponticum hybrid, serves as a valuable genetic resource for wheat improvement. Despite its potential, limited knowledge of its chromosome structure and homoeologous relationships with hexaploid wheat (Triticum aestivum) has restricted the full exploitation of GLAEL's genetic diversity in breeding programs. Here, we present the development of a 44-chromosome wheat/GLAEL addition line (GLA7). Multicolor genomic in situ hybridization identified one chromosome arm from the St subgenome of Th. intermedium, while the other arm remained unclassified. Genotyping-by-sequencing (GBS) read coverage analysis revealed a unique Robertsonian translocation between two distinct Thinopyrum subgenomes, identified as 4StS·1JvsS. The GLA7 line demonstrated strong adult plant resistance to both leaf rust and stripe rust under natural and artificial infection conditions. Automated phenotyping of shoot morphological parameters together with leaf relative water content and yield components showed that the GLA7 line exhibited elevated drought tolerance compared to parental wheat genotypes. Three years of field trials showed that GLA7 exhibits similar agronomic performance and yield components to the wheat parents. This unique addition line holds promise for enhancing wheat's tolerance to multiple stresses through the introduction of new resistance genes, as well as its ability to mitigate the effects of temporary water limitation during flowering, all without negatively impacting wheat performance.
- MeSH
- Agropyron genetics MeSH
- Chromosomes, Plant * genetics MeSH
- Phenotype MeSH
- Stress, Physiological * genetics MeSH
- Genotype MeSH
- Genotyping Techniques MeSH
- Plant Diseases * microbiology genetics MeSH
- Droughts MeSH
- Disease Resistance * genetics MeSH
- Triticum * genetics microbiology growth & development MeSH
- Plant Breeding MeSH
- Translocation, Genetic * MeSH
- Publication type
- Journal Article MeSH
The challenge of in-situ handling and high-resolution low-dose imaging of intact, sensitive and wet samples in their native state at nanometer scale, including live samples is met by Advanced Environmental Scanning Electron Microscopy (A-ESEM). This new generation of ESEM utilises machine learning-based optimization of thermodynamic conditions with respect to sample specifics to employ a low temperature method and an ionization secondary electron detector with an electrostatic separator. A modified electron microscope was used, equipped with temperature, humidity and gas pressure sensors for in-situ and real-time monitoring of the sample. A transparent ultra-thin film of ionic liquid is used to increase thermal and electrical conductivity of the samples and to minimize sample damage by free radicals. To validate the power of the new method, we analyze condensed mitotic metaphase chromosomes to reveal new structural features of their perichromosomal layer, and the organization of chromatin fibers, not observed before by any microscopic technique. The ability to resolve nano-structural details of chromosomes using A-ESEM is validated by measuring gold nanoparticles with achievable resolution in the lower nanometre units.
- MeSH
- Chromosomes ultrastructure MeSH
- Metal Nanoparticles chemistry MeSH
- Humans MeSH
- Microscopy, Electron, Scanning * methods MeSH
- Mitosis MeSH
- Gold chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Gold MeSH
Flow cytometry offers a unique way of analyzing and manipulating plant chromosomes. During a rapid movement in a liquid stream, large populations can be classified in a short time according to their fluorescence and light scatter properties. Chromosomes whose optical properties differ from other chromosomes in a karyotype can be purified by flow sorting and used in a range of applications in cytogenetics, molecular biology, genomics, and proteomics. As the samples for flow cytometry must be liquid suspensions of single particles, intact chromosomes must be released from mitotic cells. This protocol describes a procedure for preparation of suspensions of mitotic metaphase chromosomes from meristem root tips and their flow cytometric analysis and sorting for various downstream applications.
- Keywords
- Accumulation of metaphase cells, Chromosome isolation, Cytogenetic stocks, FISH, FISHIS, Flow cytometry and sorting, Hydroponic, Mitotic synchrony, Plants, Seedlings,
- MeSH
- Chromosomes, Plant * MeSH
- Chromosomes * MeSH
- Cytogenetics MeSH
- Karyotyping MeSH
- Flow Cytometry methods MeSH
- Suspensions MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Suspensions MeSH
Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.
- Keywords
- Agropyron cristatum, Illumina sequencing, SSR-marker development, annotation, chromosome sorting, chromosome-specific sequences,
- MeSH
- Agropyron * genetics MeSH
- Chromosomes, Plant genetics MeSH
- Disease Resistance genetics MeSH
- Triticum genetics MeSH
- Plant Breeding MeSH
- Publication type
- Journal Article MeSH
Flow cytometric analysis and sorting of plant mitotic chromosomes has been mastered by only a few laboratories worldwide. Yet, it has been contributing significantly to progress in plant genetics, including the production of genome assemblies and the cloning of important genes. The dissection of complex genomes by flow sorting into the individual chromosomes that represent small parts of the genome reduces DNA sample complexity and streamlines projects relying on molecular and genomic techniques. Whereas flow cytometric analysis, that is, chromosome classification according to fluorescence and light scatter properties, is an integral part of any chromosome sorting project, it has rarely been used on its own due to lower resolution and sensitivity as compared to other cytogenetic methods. To perform chromosome analysis and sorting, commercially available electrostatic droplet sorters are suitable. However, in order to resolve and purify chromosomes of interest the instrument must offer high resolution of optical signals as well as stability during long runs. The challenge is thus not the instrumentation, but the adequate sample preparation. The sample must be a suspension of intact mitotic metaphase chromosomes and the protocol, which includes the induction of cell cycle synchrony, accumulation of dividing cells at metaphase, and release of undamaged chromosomes, is time consuming and laborious and needs to be performed very carefully. Moreover, in addition to fluorescent staining chromosomal DNA, the protocol may include specific labelling of DNA repeats to facilitate discrimination of particular chromosomes. This review introduces the applications of chromosome sorting in plants, and discusses in detail sample preparation, chromosome analysis and sorting to achieve the highest purity in flow-sorted fractions, and their suitability for downstream applications.
- Keywords
- DNA amplification, DNA isolation, cell cycle synchronization, gene mapping and cloning, genome sequencing, liquid chromosome suspension, marker development, mitotic metaphase chromosomes, repetitive DNA labelling,
- MeSH
- Cell Cycle MeSH
- Chromosomes, Plant * genetics MeSH
- Metaphase MeSH
- Flow Cytometry MeSH
- Plants * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Modern sugarcane is an unusually complex heteroploid crop, and its genome comprises two or three subgenomes. To reduce the complexity of sugarcane genome research, the ploidy level and number of chromosomes can be reduced using flow chromosome sorting. However, a cell cycle synchronization (CCS) protocol for Saccharum spp. is needed that maximizes the accumulation of metaphase chromosomes. For flow cytometry analysis in this study, we optimized the lysis buffer, hydroxyurea(HU) concentration, HU treatment time and recovery time for sugarcane. We determined the mitotic index by microscopic observation and calculation. We found that WPB buffer was superior to other buffers for preparation of sugarcane nuclei suspensions. The optimal HU treatment was 2 mM for 18 h at 25 °C, 28 °C and 30 °C. Higher recovery treatment temperatures were associated with shorter recovery times (3.5 h, 2.5 h and 1.5 h at 25 °C, 28 °C and 30 °C, respectively). The optimal conditions for treatment with the inhibitor of microtubule polymerization, amiprophos-methyl (APM), were 2.5 μM for 3 h at 25 °C, 28 °C and 30 °C. Meanwhile, preliminary screening of CCS protocols for Badila were used for some main species of genus Saccharum at 25 °C, 28 °C and 30 °C, which showed that the average mitotic index decreased from 25 °C to 30 °C. The optimal sugarcane CCS protocol that yielded a mitotic index of >50% in sugarcane root tips was: 2 mM HU for 18 h, 0.1 X Hoagland's Solution without HU for 3.5 h, and 2.5 μM APM for 3.0 h at 25 °C. The CCS protocol defined in this study should accelerate the development of genomic research and cytobiology research in sugarcane.
- MeSH
- Cell Cycle physiology MeSH
- Time Factors MeSH
- Chromosomes, Plant * metabolism MeSH
- Genome, Plant genetics MeSH
- Genomics methods MeSH
- Hydroxyurea MeSH
- Metaphase MeSH
- Mitotic Index MeSH
- Nitrobenzenes MeSH
- Organothiophosphorus Compounds MeSH
- Flow Cytometry methods MeSH
- Buffers MeSH
- Saccharum cytology genetics MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- amiprophos methyl MeSH Browser
- Hydroxyurea MeSH
- Nitrobenzenes MeSH
- Organothiophosphorus Compounds MeSH
- Buffers MeSH
A genetic linkage map of dioecious garden asparagus (Asparagus officinalis L., 2n = 2x = 20) was constructed using F1 population, simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. In total, 1376 SNPs and 27 SSRs were used for genetic mapping. Two resulting parental maps contained 907 and 678 markers spanning 1947 and 1814 cM, for female and male parent, respectively, over ten linkage groups representing ten haploid chromosomes of the species. With the aim to anchor the ten genetic linkage groups to individual chromosomes and develop a tool to facilitate genome analysis and gene cloning, we have optimized a protocol for flow cytometric chromosome analysis and sorting in asparagus. The analysis of DAPI-stained suspensions of intact mitotic chromosomes by flow cytometry resulted in histograms of relative fluorescence intensity (flow karyotypes) comprising eight major peaks. The analysis of chromosome morphology and localization of 5S and 45S rDNA by FISH on flow-sorted chromosomes, revealed that four chromosomes (IV, V, VI, VIII) could be discriminated and sorted. Seventy-two SSR markers were used to characterize chromosome content of individual peaks on the flow karyotype. Out of them, 27 were included in the genetic linkage map and anchored genetic linkage groups to chromosomes. The sex determining locus was located on LG5, which was associated with peak V representing a chromosome with 5S rDNA locus. The results obtained in this study will support asparagus improvement by facilitating targeted marker development and gene isolation using flow-sorted chromosomes.
- Keywords
- Asparagus officinalis, FISH, SNPs, SSRs, flow-sorted chromosomes, genetic map, sex chromosome,
- Publication type
- Journal Article MeSH
Improved knowledge of genome composition, especially of its repetitive component, generates important information for both theoretical and applied research. The olive repetitive component is made up of two main classes of sequences: tandem repeats and retrotransposons (REs). In this study, we provide characterization of a sample of 254 unique full-length long terminal repeat (LTR) REs. In the sample, Ty1-Copia elements were more numerous than Ty3-Gypsy elements. Mapping a large set of Illumina whole-genome shotgun reads onto the identified retroelement set revealed that Gypsy elements are more redundant than Copia elements. The insertion time of intact retroelements was estimated based on sister LTR's divergence. Although some elements inserted relatively recently, the mean insertion age of the isolated retroelements is around 18 million yrs. Gypsy and Copia retroelements showed different waves of transposition, with Gypsy elements especially active between 10 and 25 million yrs ago and nearly inactive in the last 7 million yrs. The occurrence of numerous solo-LTRs related to isolated full-length retroelements was ascertained for two Gypsy elements and one Copia element. Overall, the results reported in this study show that RE activity (both retrotransposition and DNA loss) has impacted the olive genome structure in more ancient times than in other angiosperms.
- Keywords
- BAC sequencing, LTR retrotransposons, insertion age, next-generation sequencing, olive,
- MeSH
- Genome-Wide Association Study * MeSH
- Terminal Repeat Sequences * MeSH
- Chromosome Mapping * MeSH
- Olea genetics MeSH
- Retroelements * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Retroelements * MeSH
The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before.
- MeSH
- Chromosomes, Plant genetics MeSH
- Festuca genetics MeSH
- Genome, Plant genetics MeSH
- Genomics methods MeSH
- In Situ Hybridization, Fluorescence MeSH
- Hordeum genetics MeSH
- Karyotyping methods MeSH
- Chromosome Mapping MeSH
- Molecular Sequence Data MeSH
- Gene Order MeSH
- Reproducibility of Results MeSH
- Oryza MeSH
- Sequence Analysis, DNA methods MeSH
- Sorghum genetics MeSH
- Blotting, Southern MeSH
- Synteny MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.
- MeSH
- Chromosomes chemistry genetics MeSH
- Physical Chromosome Mapping methods MeSH
- Genome, Human MeSH
- Genomics methods MeSH
- Gene Library MeSH
- Karyotype MeSH
- Humans MeSH
- Chromosome Painting methods MeSH
- Mitosis MeSH
- Flow Cytometry methods MeSH
- Plants chemistry genetics MeSH
- Oligonucleotide Array Sequence Analysis methods MeSH
- Chromosome Structures chemistry genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH